--- license: apache-2.0 datasets: - togethercomputer/RedPajama-Data-1T language: - en base_model: - KoboldAI/fairseq-dense-125M --- # Data Scorer The model to score data for data selection in the paper [Data Selection via Optimal Learning for Language Models](https://arxiv.org/abs/2410.07064). To use the model, follow the instructions [here](https://github.com/microsoft/LMOps/tree/main/data_selection#5-use-the-data-scorer-to-score-examples). NOTE: you may need to download the [fairseq-125M](https://huggingface.co/KoboldAI/fairseq-dense-125M) to `${PATH_TO_DATA_SELECTION_REPO}/checkpoints/fairseq/125M` to prepare the tokenizer and config.json for the base model. ### Citation ```bibtex @article{gu2024data, title={Data Selection via Optimal Control for Language Models}, author={Gu, Yuxian and Dong, Li and Wang, Hongning and Hao, Yaru and Dong, Qingxiu and Wei, Furu and Huang, Minlie}, journal={arXiv preprint arXiv:2410.07064}, year={2024} } ```