--- license: apache-2.0 language: - en pipeline_tag: text2text-generation --- Some example code to load our model locally and generate a prediction: ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Dede1989600/hatespeech_mCAD") model = AutoModelForSeq2SeqLM.from_pretrained("Dede1989600/hatespeech_mCAD") inputs = tokenizer("This is a test that should be labeled as no hate", return_tensors="pt") outputs = model.generate(**inputs) tokenizer.decode(outputs[0], skip_special_tokens=True) ``` The model returns either 1 for hatespeech or 0 for no hatespeech