# -------------------------------------------------------- # InternVL # Copyright (c) 2024 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import warnings from typing import Any, List, Optional, Tuple, Union import torchvision.transforms as T from torchvision.transforms.functional import InterpolationMode import torch.utils.checkpoint import transformers from .modeling_internlm2 import InternLM2ForCausalLM from .modeling_phi3 import Phi3ForCausalLM from peft import LoraConfig, get_peft_model from torch import nn from torch.nn import CrossEntropyLoss from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, LlamaTokenizer, Qwen2ForCausalLM) from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.modeling_utils import PreTrainedModel from transformers.utils import ModelOutput, logging from transformers import StoppingCriteriaList, StoppingCriteria from .configuration_sa2va_chat import Sa2VAChatConfig from .modeling_intern_vit import InternVisionModel, has_flash_attn from .sam2 import SAM2 from .templates import PROMPT_TEMPLATE import numpy as np from torchvision.transforms.functional import resize, to_pil_image from types import MethodType import torch.nn.functional as F try: from .flash_attention import FlashAttention has_flash_attn = True except: print('FlashAttention is not installed.') has_flash_attn = False logger = logging.get_logger(__name__) def version_cmp(v1, v2, op='eq'): import operator from packaging import version op_func = getattr(operator, op) return op_func(version.parse(v1), version.parse(v2)) class StopWordStoppingCriteria(StoppingCriteria): """StopWord stopping criteria.""" def __init__(self, tokenizer, stop_word): self.tokenizer = tokenizer self.stop_word = stop_word self.length = len(self.stop_word) def __call__(self, input_ids, *args, **kwargs) -> bool: cur_text = self.tokenizer.decode(input_ids[0]) cur_text = cur_text.replace('\r', '').replace('\n', '') return cur_text[-self.length:] == self.stop_word def get_stop_criteria( tokenizer, stop_words=[], ): stop_criteria = StoppingCriteriaList() for word in stop_words: stop_criteria.append(StopWordStoppingCriteria(tokenizer, word)) return stop_criteria class DirectResize: def __init__(self, target_length: int) -> None: self.target_length = target_length def apply_image(self, image: np.ndarray) -> np.ndarray: """ Expects a numpy array with shape HxWxC in uint8 format. """ img = to_pil_image(image, mode='RGB') return np.array(img.resize((self.target_length, self.target_length))) class Sa2VAChatModel(PreTrainedModel): config_class = Sa2VAChatConfig main_input_name = 'pixel_values' base_model_prefix = 'language_model' _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer', 'Phi3DecoderLayer', 'Qwen2DecoderLayer', 'SAM2'] _supports_flash_attn_2 = True supports_gradient_checkpointing = True def __init__(self, config: Sa2VAChatConfig, vision_model=None, language_model=None, use_flash_attn=True): super().__init__(config) assert version_cmp(transformers.__version__, '4.37.0', 'ge') image_size = config.force_image_size or config.vision_config.image_size patch_size = config.vision_config.patch_size self.patch_size = patch_size self.select_layer = config.select_layer self.template = config.template self.template = self.template.replace('-', '_') self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) self.downsample_ratio = config.downsample_ratio self.ps_version = config.ps_version self.llm_arch_name = config.llm_config.architectures[0] use_flash_attn = use_flash_attn if has_flash_attn else False config.vision_config.use_flash_attn = True if use_flash_attn else False config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager' logger.info(f'num_image_token: {self.num_image_token}') logger.info(f'ps_version: {self.ps_version}') if vision_model is not None: self.vision_model = vision_model else: self.vision_model = InternVisionModel(config.vision_config) if language_model is not None: self.language_model = language_model else: if config.llm_config.architectures[0] == 'LlamaForCausalLM': self.language_model = LlamaForCausalLM(config.llm_config) elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM': self.language_model = InternLM2ForCausalLM(config.llm_config) elif config.llm_config.architectures[0] == 'Phi3ForCausalLM': self.language_model = Phi3ForCausalLM(config.llm_config) elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM': self.language_model = Qwen2ForCausalLM(config.llm_config) else: raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') vit_hidden_size = config.vision_config.hidden_size llm_hidden_size = config.llm_config.hidden_size self.mlp1 = nn.Sequential( nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), nn.GELU(), nn.Linear(llm_hidden_size, llm_hidden_size) ) self.img_context_token_id = None self.conv_template = PROMPT_TEMPLATE[self.template] self.template = self.conv_template if hasattr(config, 'system_message'): self.system_message = config.system_message self.num_samples = 0 if config.use_backbone_lora: self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora) if config.use_llm_lora: self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora) self.grounding_encoder = SAM2() out_dim = self.grounding_encoder.hidden_dim in_dim = llm_hidden_size self.text_hidden_fcs = nn.Sequential( nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True), nn.Linear(in_dim, out_dim), nn.Dropout(0.0) ) self.init_prediction_config = False def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): lora_config = LoraConfig( r=r, target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'], lora_alpha=lora_alpha, lora_dropout=lora_dropout, ) self.vision_model = get_peft_model(self.vision_model, lora_config) self.vision_model.print_trainable_parameters() def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): # Determine the target modules based on the architecture of the language model if self.llm_arch_name == 'InternLM2ForCausalLM': target_modules = ['attention.wqkv', 'attention.wo', 'feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3'] elif self.llm_arch_name == 'Phi3ForCausalLM': target_modules = ['mlp.down_proj', 'mlp.gate_up_proj', 'self_attn.o_proj', 'self_attn.qkv_proj'] elif self.llm_arch_name in ['Qwen2ForCausalLM', 'LlamaForCausalLM']: target_modules = ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj', 'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'] else: raise NotImplemented lora_config = LoraConfig( r=r, target_modules=target_modules, lora_alpha=lora_alpha, lora_dropout=lora_dropout, task_type='CAUSAL_LM' ) self.language_model = get_peft_model(self.language_model, lora_config) self.language_model.enable_input_require_grads() self.language_model.print_trainable_parameters() def pixel_shuffle(self, x, scale_factor=0.5): n, w, h, c = x.size() # N, W, H, C --> N, W, H * scale, C // scale x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) # N, W, H * scale, C // scale --> N, H * scale, W, C // scale x = x.permute(0, 2, 1, 3).contiguous() # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2) x = x.view(n, int(h * scale_factor), int(w * scale_factor), int(c / (scale_factor * scale_factor))) if self.ps_version == 'v1': warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " 'which results in a transposed image.') else: x = x.permute(0, 2, 1, 3).contiguous() return x def extract_feature(self, pixel_values): if self.select_layer == -1: vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=False, return_dict=True).last_hidden_state else: vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=True, return_dict=True).hidden_states[self.select_layer] vit_embeds = vit_embeds[:, 1:, :] h = w = int(vit_embeds.shape[1] ** 0.5) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) vit_embeds = self.mlp1(vit_embeds) return vit_embeds @property def lm_head(self): return self.language_model.get_output_embeddings() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def get_output_embeddings(self): return self.language_model.get_output_embeddings() def forward(self, data, data_samples=None, mode='loss'): pixel_values = data['pixel_values'] if type(pixel_values) is list or pixel_values.ndim == 5: if type(pixel_values) is list: pixel_values = [ x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values ] # b*n, c, h, w concat_images = torch.cat( [image.to(self.vision_model.dtype) for image in pixel_values], dim=0) else: raise NotImplementedError() input_ids = data['input_ids'] position_ids = data['position_ids'] attention_mask = data['attention_mask'] # sum is 0 are text image_flags = torch.sum(concat_images, dim=(1, 2, 3)) != 0 image_flags = image_flags.long() labels = data['labels'] use_cache = False if 'vp_overall_mask' not in data.keys(): vp_overall_mask = None else: vp_overall_mask = data['vp_overall_mask'] if 'prompt_masks' in data.keys(): prompt_masks = data['prompt_masks'] else: prompt_masks = None outputs = self._llm_forward( input_ids=input_ids, position_ids=position_ids, attention_mask=attention_mask, image_flags=image_flags, pixel_values=concat_images, labels=labels, use_cache=use_cache, output_hidden_states=True, vp_overall_mask=vp_overall_mask, prompt_masks=prompt_masks, ) return outputs def _llm_forward( self, pixel_values: torch.FloatTensor, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, image_flags: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, vp_overall_mask=None, prompt_masks=None, ) -> Union[Tuple, CausalLMOutputWithPast]: return_dict = return_dict if return_dict is not None \ else self.config.use_return_dict image_flags = image_flags.squeeze(-1) # We only added the clone code here to avoid the error. input_embeds = self.language_model.get_input_embeddings()( input_ids).clone() vit_embeds = self.extract_feature(pixel_values) vit_embeds = vit_embeds.to(input_embeds.dtype) # FIXME: why vit_embeds is float16? fast_vit_embeds = None vit_embeds = vit_embeds[image_flags == 1] vit_batch_size = pixel_values.shape[0] B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) self._count += 1 if vp_overall_mask is not None and prompt_masks is not None: vp_embeds = [] vp_overall_mask = vp_overall_mask.to(vit_embeds.device).bool() prompt_masks = [item.to(vit_embeds.device).bool() for item in prompt_masks] vp_overall_mask = vp_overall_mask[image_flags == 1] overall_tile_vit_embeds = vit_embeds[vp_overall_mask] # (n_img, hw, c) i_vp_img = 0 for i_img in range(len(vit_embeds)): vp_embeds.append(vit_embeds[i_img].reshape(-1, C)) if vp_overall_mask[i_img]: tile_vit_embeds = overall_tile_vit_embeds[i_vp_img].reshape(-1, C) # (hw, C) objects_prompt_masks = prompt_masks[i_vp_img] n_obj = len(objects_prompt_masks) tile_vit_embeds = tile_vit_embeds.unsqueeze(0).repeat(n_obj, 1, 1) objects_prompt_masks = objects_prompt_masks.reshape(n_obj, -1) vp_embeds.append(tile_vit_embeds[objects_prompt_masks]) i_vp_img += 1 vp_embeds = torch.cat(vp_embeds, dim=0) else: vp_embeds = None input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) if vp_embeds is None: try: input_embeds[selected] = vit_embeds.reshape(-1, C) except Exception as e: vit_embeds = vit_embeds.reshape(-1, C) print(f'warning: {e}, input_embeds[selected].shape=' f'{input_embeds[selected].shape}, ' f'vit_embeds.shape={vit_embeds.shape}') n_token = selected.sum() if n_token > len(vit_embeds): print(f"Wrong !!! {n_token} image tokens in text but only {len(vit_embeds)} vit embeds !!!") expand_ratio = n_token // len(vit_embeds) + 1 vit_embeds = torch.cat([vit_embeds] * expand_ratio, dim=0) input_embeds[selected] = vit_embeds[:n_token] else: try: input_embeds[selected] = vp_embeds.reshape(-1, C) except Exception as e: vp_embeds = vp_embeds.reshape(-1, C) print(f'warning: {e}, input_embeds[selected].shape=' f'{input_embeds[selected].shape}, ' f'vp_embeds.shape={vp_embeds.shape}') n_token = selected.sum() if n_token > len(vp_embeds): print(f"Wrong !!! {n_token} image tokens in text but only {len(vp_embeds)} vit embeds !!!") expand_ratio = n_token // len(vp_embeds) + 1 vp_embeds = torch.cat([vp_embeds] * expand_ratio, dim=0) input_embeds[selected] = vp_embeds[:n_token] input_embeds = input_embeds.reshape(B, N, C) outputs = self.language_model( inputs_embeds=input_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view( -1, self.language_model.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @torch.no_grad() def generate( self, pixel_values: Optional[torch.FloatTensor] = None, input_ids: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, visual_features: Optional[torch.FloatTensor] = None, generation_config: Optional[GenerationConfig] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, prompt_masks=None, vp_overall_mask=None, **generate_kwargs, ) -> torch.LongTensor: device = self.device assert self.img_context_token_id is not None if pixel_values is not None: if visual_features is not None: vit_embeds = visual_features else: if type(pixel_values) is list or pixel_values.ndim == 5: if type(pixel_values) is list: pixel_values = [ x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values ] # b*n, c, h, w pixel_values = torch.cat( [image.to(self.vision_model.dtype) for image in pixel_values], dim=0) vit_embeds = self.extract_feature(pixel_values.to(device)) image_flags = torch.sum(pixel_values, dim=(1, 2, 3)) != 0 image_flags = image_flags.long() vit_embeds = vit_embeds[image_flags == 1] input_embeds = self.language_model.get_input_embeddings()(input_ids.to(device)) B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) if vp_overall_mask is not None and prompt_masks is not None: vp_embeds = [] vp_overall_mask = vp_overall_mask.to(vit_embeds.device).bool() prompt_masks = [item.to(vit_embeds.device).bool() for item in prompt_masks] vp_overall_mask = vp_overall_mask[image_flags == 1] overall_tile_vit_embeds = vit_embeds[vp_overall_mask] # (n_img, hw, c) i_vp_img = 0 for i_img in range(len(vit_embeds)): vp_embeds.append(vit_embeds[i_img].reshape(-1, C)) if vp_overall_mask[i_img]: tile_vit_embeds = overall_tile_vit_embeds[i_vp_img].reshape(-1, C) # (hw, C) objects_prompt_masks = prompt_masks[i_vp_img] n_obj = len(objects_prompt_masks) tile_vit_embeds = tile_vit_embeds.unsqueeze(0).repeat(n_obj, 1, 1) objects_prompt_masks = objects_prompt_masks.reshape(n_obj, -1) vp_embeds.append(tile_vit_embeds[objects_prompt_masks]) i_vp_img += 1 vp_embeds = torch.cat(vp_embeds, dim=0) else: vp_embeds = None input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) assert selected.sum() != 0 if vp_embeds is None: input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) else: if len(input_embeds[selected]) != len(vp_embeds.reshape(-1, C)): print("Shape mismatch, selected is {}, vp embeds is {} !!!" \ .format(len(input_embeds[selected]), len(vp_embeds.reshape(-1, C)))) min_tokens = min(len(input_embeds[selected]), len(vp_embeds.reshape(-1, C))) input_embeds[selected][:min_tokens] = vp_embeds.reshape(-1, C)[:min_tokens].to(input_embeds.device) else: input_embeds[selected] = vp_embeds.reshape(-1, C).to(input_embeds.device) input_embeds = input_embeds.reshape(B, N, C) else: input_embeds = self.language_model.get_input_embeddings()(input_ids) outputs = self.language_model.generate( inputs_embeds=input_embeds, attention_mask=attention_mask.to(device), generation_config=generation_config, output_hidden_states=output_hidden_states, return_dict=return_dict, use_cache=True, **generate_kwargs, ) return outputs def preparing_for_generation(self, tokenizer, max_new_tokens=2048, torch_dtype=torch.bfloat16): # set stop criteria and generation configs for model if not hasattr(self, 'tokenizer'): self.tokenizer = tokenizer self.bot_name = 'BOT' stop_words = [] stop_words += self.template.get('STOP_WORDS', []) stop_criteria = get_stop_criteria( tokenizer=self.tokenizer, stop_words=stop_words) self.stop_criteria = stop_criteria default_generation_kwargs = dict( max_new_tokens=max_new_tokens, do_sample=False, eos_token_id=self.tokenizer.eos_token_id, pad_token_id=( self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id ), ) self.gen_config = GenerationConfig(**default_generation_kwargs) self.init_prediction_config = True self.torch_dtype = torch_dtype self.to(torch_dtype) self.extra_image_processor = DirectResize(target_length=1024, ) # for multi image process self.min_dynamic_patch = 1 self.max_dynamic_patch = 12 self.downsample_ratio = 0.5 self.image_size = 448 self.use_thumbnail = True patch_size = 14 self.patch_size = patch_size self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2)) self.IMAGENET_MEAN = (0.485, 0.456, 0.406) self.IMAGENET_STD = (0.229, 0.224, 0.225) self.IMG_CONTEXT_TOKEN = '' self.IMG_START_TOKEN = '' self.IMG_END_TOKEN = '' self.transformer = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD) ]) self.VP_START_TOKEN = '' self.VP_END_TOKEN = '' # change phi3 prepare for generation fuction if self.config.llm_config.architectures[0] == 'Phi3ForCausalLM': self.language_model.prepare_inputs_for_generation = MethodType(prepare_inputs_for_generation_phi3, self.language_model) img_context_token_id = tokenizer.convert_tokens_to_ids('') self.img_context_token_id = img_context_token_id self.seg_token_idx = tokenizer.convert_tokens_to_ids('[SEG]') return def predict_forward( self, image=None, text=None, past_text='', mask_prompts=None, tokenizer=None, ): if not self.init_prediction_config: assert tokenizer self.preparing_for_generation(tokenizer=tokenizer) input_dict = {} ori_image_size = image.size # prepare grounding images g_image = np.array(image) # for grounding g_image = self.extra_image_processor.apply_image(g_image) g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous().to(self.torch_dtype) input_dict['g_pixel_values'] = g_pixel_values images = dynamic_preprocess(image, self.min_dynamic_patch, self.max_dynamic_patch, self.image_size, self.use_thumbnail) if mask_prompts is not None: vp_overall_mask = torch.Tensor([False] * (len(images) - 1) + [True]) input_dict['vp_overall_mask'] = vp_overall_mask else: input_dict['vp_overall_mask'] = None pixel_values = [self.transformer(image) for image in images] pixel_values = torch.stack(pixel_values).to(self.torch_dtype) input_dict['pixel_values'] = pixel_values num_image_tokens = pixel_values.shape[0] * self.patch_token if mask_prompts is not None: # reshape mask prompts to feature size mask_prompts = [torch.Tensor(item).to(pixel_values.device) for item in mask_prompts] mask_prompts = [F.interpolate( item.unsqueeze(0), size=(int(self.image_size // self.patch_size * self.downsample_ratio), int(self.image_size // self.patch_size * self.downsample_ratio)), mode='nearest').squeeze(0) for item in mask_prompts] region_pixels = [] for mask_prompt in mask_prompts[0]: region_pixels.append(mask_prompt.to(torch.int64).sum()) vp_token_str = '\nThere are {} part regions in the picture: '.format(len(mask_prompts[0])) for i in range(len(mask_prompts[0])): vp_token_str = vp_token_str + \ f"region{i + 1}" + self.VP_START_TOKEN + \ self.IMG_CONTEXT_TOKEN * region_pixels[i] + \ self.VP_END_TOKEN if i == len(mask_prompts[0]) - 1: vp_token_str = vp_token_str + '.\n' else: vp_token_str = vp_token_str + ', ' else: vp_token_str = '' image_token_str = f'{self.IMG_START_TOKEN}' \ f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \ f'{self.IMG_END_TOKEN}' ret_masks = [] if '' in text or mask_prompts is not None: assert past_text is None or len(past_text) == 0 text = text.replace('', image_token_str + vp_token_str) input_text = '' input_text += self.template['INSTRUCTION'].format( input=text, round=1, bot_name=self.bot_name) input_text = past_text + input_text ids = self.tokenizer.encode(input_text) ids = torch.tensor(ids).cuda().unsqueeze(0) attention_mask = torch.ones_like(ids, dtype=torch.bool) mm_inputs = { 'pixel_values': input_dict['pixel_values'], 'input_ids': ids, 'attention_mask': attention_mask, 'position_ids': None, 'past_key_values': None, 'labels': None, 'prompt_masks': mask_prompts, 'vp_overall_mask': input_dict['vp_overall_mask'], } generate_output = self.generate( **mm_inputs, generation_config=self.gen_config, streamer=None, bos_token_id=self.tokenizer.bos_token_id, stopping_criteria=self.stop_criteria, output_hidden_states=True, return_dict_in_generate=True ) predict = self.tokenizer.decode( generate_output.sequences[0], skip_special_tokens=False).strip() # if have seg result, find the seg hidden states hidden_states = generate_output.hidden_states last_hidden_states = [item[-1][0] for item in hidden_states] last_hidden_states = torch.cat(last_hidden_states, dim=0) seg_hidden_states = get_seg_hidden_states( last_hidden_states, generate_output.sequences[0][:-1], seg_id=self.seg_token_idx ) all_seg_hidden_states = self.text_hidden_fcs(seg_hidden_states) for seg_hidden_states in all_seg_hidden_states: seg_hidden_states = seg_hidden_states.unsqueeze(0) g_pixel_values = torch.stack([ self.grounding_encoder.preprocess_image(pixel, dtype=self.torch_dtype) for pixel in [input_dict['g_pixel_values']]]) sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values) pred_masks = self.grounding_encoder.inject_language_embd(sam_states, [seg_hidden_states]) w, h = ori_image_size masks = F.interpolate(pred_masks, size=(h, w), mode='bilinear', align_corners=False) masks = masks[:, 0] masks = masks.sigmoid() > 0.5 masks = masks.int().cpu() ret_masks.append(masks) return {'prediction': predict, 'prediction_masks': ret_masks,} def get_seg_hidden_states(hidden_states, output_ids, seg_id): seg_mask = output_ids == seg_id n_out = len(seg_mask) return hidden_states[-n_out:][seg_mask] def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = {(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num} target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ((i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images from transformers.cache_utils import Cache, DynamicCache def prepare_inputs_for_generation_phi3( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens max_cache_length = past_key_values.get_max_length() else: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get('position_ids', None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1]:] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and (past_key_values is None or len(past_key_values)==0): model_inputs = {'inputs_embeds': inputs_embeds} else: model_inputs = {'input_ids': input_ids} model_inputs.update( { 'position_ids': position_ids, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache'), 'attention_mask': attention_mask, } ) return model_inputs