--- language: - en license: apache-2.0 base_model: openai/whisper-base.en tags: - generated_from_trainer datasets: - Hani89/medical_asr_recording_dataset metrics: - wer model-index: - name: English Whisper Model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Medical type: Hani89/medical_asr_recording_dataset args: 'split: test' metrics: - name: Wer type: wer value: 8.218579234972678 --- # English Whisper Model This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on the Medical dataset. It achieves the following results on the evaluation set: - Loss: 0.1241 - Wer: 8.2186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0573 | 3.0030 | 1000 | 0.1333 | 8.6703 | | 0.0073 | 6.0060 | 2000 | 0.1185 | 8.2914 | | 0.0009 | 9.0090 | 3000 | 0.1241 | 8.2186 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1