--- library_name: transformers license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-base-ft-cv-cy-en results: [] --- # whisper-base-ft-cv-cy-en This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the DewiBrynJones/commonvoice_18_0_cy_en train main dataset. It achieves the following results on the evaluation set: - Loss: 0.5812 - Wer: 0.3526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.6185 | 0.7075 | 1000 | 0.6446 | 0.3809 | | 0.4497 | 1.4149 | 2000 | 0.5812 | 0.3526 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3