--- license: mit base_model: indobenchmark/indobert-base-p2 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: kategori_aspek_model results: [] --- # kategori_aspek_model This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5731 - Accuracy: 0.7532 - F1: 0.7342 - Precision: 0.6791 - Recall: 0.8234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6662 | 1.0 | 1816 | 0.6854 | 0.7449 | 0.7139 | 0.6657 | 0.7857 | | 0.4846 | 2.0 | 3632 | 0.5731 | 0.7532 | 0.7342 | 0.6791 | 0.8234 | | 0.3135 | 3.0 | 5448 | 0.6906 | 0.7667 | 0.7431 | 0.7017 | 0.7994 | | 0.2189 | 4.0 | 7264 | 0.8181 | 0.7755 | 0.7387 | 0.7065 | 0.7994 | | 0.152 | 5.0 | 9080 | 0.9838 | 0.7893 | 0.7486 | 0.7290 | 0.7799 | | 0.0938 | 6.0 | 10896 | 1.0601 | 0.7826 | 0.7598 | 0.7314 | 0.7957 | | 0.0629 | 7.0 | 12712 | 1.3297 | 0.7868 | 0.7665 | 0.7673 | 0.7684 | | 0.0423 | 8.0 | 14528 | 1.3356 | 0.7906 | 0.7639 | 0.7477 | 0.7875 | | 0.0178 | 9.0 | 16344 | 1.5868 | 0.7887 | 0.7625 | 0.7656 | 0.7638 | | 0.008 | 10.0 | 18160 | 1.5453 | 0.7928 | 0.7650 | 0.7621 | 0.7709 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0