--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - shipping_label_ner metrics: - precision - recall - f1 - accuracy model-index: - name: ner_bert_model results: - task: name: Token Classification type: token-classification dataset: name: shipping_label_ner type: shipping_label_ner config: shipping_label_ner split: validation args: shipping_label_ner metrics: - name: Precision type: precision value: 0.8235294117647058 - name: Recall type: recall value: 0.9333333333333333 - name: F1 type: f1 value: 0.8749999999999999 - name: Accuracy type: accuracy value: 0.9096045197740112 --- # ner_bert_model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the shipping_label_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.4145 - Precision: 0.8235 - Recall: 0.9333 - F1: 0.8750 - Accuracy: 0.9096 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 7 | 1.7796 | 0.0 | 0.0 | 0.0 | 0.4294 | | No log | 2.0 | 14 | 1.4530 | 0.5 | 0.2667 | 0.3478 | 0.5650 | | No log | 3.0 | 21 | 1.1854 | 0.5510 | 0.36 | 0.4355 | 0.6384 | | No log | 4.0 | 28 | 0.9850 | 0.6667 | 0.5867 | 0.6241 | 0.7345 | | No log | 5.0 | 35 | 0.8189 | 0.6622 | 0.6533 | 0.6577 | 0.7797 | | No log | 6.0 | 42 | 0.7194 | 0.6914 | 0.7467 | 0.7179 | 0.8192 | | No log | 7.0 | 49 | 0.6126 | 0.7262 | 0.8133 | 0.7673 | 0.8588 | | No log | 8.0 | 56 | 0.5760 | 0.75 | 0.88 | 0.8098 | 0.8701 | | No log | 9.0 | 63 | 0.4819 | 0.8 | 0.9067 | 0.8500 | 0.8927 | | No log | 10.0 | 70 | 0.4610 | 0.7907 | 0.9067 | 0.8447 | 0.8983 | | No log | 11.0 | 77 | 0.4471 | 0.8 | 0.9067 | 0.8500 | 0.8927 | | No log | 12.0 | 84 | 0.4203 | 0.7931 | 0.92 | 0.8519 | 0.9040 | | No log | 13.0 | 91 | 0.4281 | 0.8256 | 0.9467 | 0.8820 | 0.9153 | | No log | 14.0 | 98 | 0.3913 | 0.8256 | 0.9467 | 0.8820 | 0.9153 | | No log | 15.0 | 105 | 0.3966 | 0.8235 | 0.9333 | 0.8750 | 0.9096 | | No log | 16.0 | 112 | 0.4033 | 0.8235 | 0.9333 | 0.8750 | 0.9096 | | No log | 17.0 | 119 | 0.4149 | 0.8140 | 0.9333 | 0.8696 | 0.9040 | | No log | 18.0 | 126 | 0.4150 | 0.8140 | 0.9333 | 0.8696 | 0.9040 | | No log | 19.0 | 133 | 0.4122 | 0.8235 | 0.9333 | 0.8750 | 0.9096 | | No log | 20.0 | 140 | 0.4145 | 0.8235 | 0.9333 | 0.8750 | 0.9096 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2