--- tags: - random-forest - stroke-prediction - classification - healthcare license: mit widget: - text: "Patient details: Age 45, Hypertension 1, Avg_glucose_level 170, BMI 26" datasets: - stroke-prediction-dataset --- # Stroke Prediction Model # Date 2024-12-19 This model uses a Random Forest Classifier to predict the likelihood of a stroke based on patient details. ## Model Details - **Algorithm**: Random Forest - **Use Case**: Healthcare, Stroke Risk Prediction - **Performance Metrics**: - **Accuracy**: 94.70% - **ROC-AUC Score**: 0.79 - **Classification Report**: ``` precision recall f1-score support 0 0.95 1.00 0.97 929 1 1.00 0.02 0.04 53 accuracy 0.95 982 macro avg 0.97 0.51 0.50 982 weighted avg 0.95 0.95 0.92 982 ``` ## How to Use This model i created in google colab. Relavant libraries include: ## How to Use This runs in google colab. Import as per below: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import random from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, classification_report, confusion_matrix from sklearn.preprocessing import MinMaxScaler # For kaggle import os import zipfile # For Hugging face # from sklearn.externals import joblib # to save the model from huggingface_hub import notebook_login from huggingface_hub import Repository Download the model and load it using `joblib Replace input_data with your data, e.g. [[45, 1, 170, 26]] # Age, Hypertension, Avg_glucose_level, BMI