--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-hi-cv8-b2 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 7 args: hi metrics: - type: wer value: 0.3891350503092403 name: Test WER - name: Test CER type: cer value: 0.13016327327131985 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hi metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- # wav2vec2-large-xls-r-300m-hi-cv8-b2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.7322 - Wer: 0.3469 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8-b2 --dataset mozilla-foundation/common_voice_8_0 --config hi --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Hindi language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 700 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.6226 | 1.04 | 200 | 3.8855 | 1.0 | | 3.4678 | 2.07 | 400 | 3.4283 | 1.0 | | 2.3668 | 3.11 | 600 | 1.0743 | 0.7175 | | 0.7308 | 4.15 | 800 | 0.7663 | 0.5498 | | 0.4985 | 5.18 | 1000 | 0.6957 | 0.5001 | | 0.3817 | 6.22 | 1200 | 0.6932 | 0.4866 | | 0.3281 | 7.25 | 1400 | 0.7034 | 0.4983 | | 0.2752 | 8.29 | 1600 | 0.6588 | 0.4606 | | 0.2475 | 9.33 | 1800 | 0.6514 | 0.4328 | | 0.219 | 10.36 | 2000 | 0.6396 | 0.4176 | | 0.2036 | 11.4 | 2200 | 0.6867 | 0.4162 | | 0.1793 | 12.44 | 2400 | 0.6943 | 0.4196 | | 0.1724 | 13.47 | 2600 | 0.6862 | 0.4260 | | 0.1554 | 14.51 | 2800 | 0.7615 | 0.4222 | | 0.151 | 15.54 | 3000 | 0.7058 | 0.4110 | | 0.1335 | 16.58 | 3200 | 0.7172 | 0.3986 | | 0.1326 | 17.62 | 3400 | 0.7182 | 0.3923 | | 0.1225 | 18.65 | 3600 | 0.6995 | 0.3910 | | 0.1146 | 19.69 | 3800 | 0.7075 | 0.3875 | | 0.108 | 20.73 | 4000 | 0.7297 | 0.3858 | | 0.1048 | 21.76 | 4200 | 0.7413 | 0.3850 | | 0.0979 | 22.8 | 4400 | 0.7452 | 0.3793 | | 0.0946 | 23.83 | 4600 | 0.7436 | 0.3759 | | 0.0897 | 24.87 | 4800 | 0.7289 | 0.3754 | | 0.0854 | 25.91 | 5000 | 0.7271 | 0.3667 | | 0.0803 | 26.94 | 5200 | 0.7378 | 0.3656 | | 0.0752 | 27.98 | 5400 | 0.7488 | 0.3680 | | 0.0718 | 29.02 | 5600 | 0.7185 | 0.3619 | | 0.0702 | 30.05 | 5800 | 0.7428 | 0.3554 | | 0.0653 | 31.09 | 6000 | 0.7447 | 0.3559 | | 0.0638 | 32.12 | 6200 | 0.7327 | 0.3523 | | 0.058 | 33.16 | 6400 | 0.7339 | 0.3488 | | 0.0594 | 34.2 | 6600 | 0.7322 | 0.3469 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0