--- language: - or license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - or - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-or-dx12 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: or metrics: - name: Test WER type: wer value: 0.5947242206235012 - name: Test CER type: cer value: 0.18272388876724327 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: or metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- # wav2vec2-large-xls-r-300m-or-dx12 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.4638 - Wer: 0.5602 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-or-dx12 --dataset mozilla-foundation/common_voice_8_0 --config or --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Oriya language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 13.5059 | 4.17 | 100 | 10.3789 | 1.0 | | 4.5964 | 8.33 | 200 | 4.3294 | 1.0 | | 3.4448 | 12.5 | 300 | 3.7903 | 1.0 | | 3.3683 | 16.67 | 400 | 3.5289 | 1.0 | | 2.042 | 20.83 | 500 | 1.1531 | 0.7857 | | 0.5721 | 25.0 | 600 | 1.0267 | 0.7646 | | 0.3274 | 29.17 | 700 | 1.0773 | 0.6938 | | 0.2466 | 33.33 | 800 | 1.0323 | 0.6647 | | 0.2047 | 37.5 | 900 | 1.1255 | 0.6733 | | 0.1847 | 41.67 | 1000 | 1.1194 | 0.6515 | | 0.1453 | 45.83 | 1100 | 1.1215 | 0.6601 | | 0.1367 | 50.0 | 1200 | 1.1898 | 0.6627 | | 0.1334 | 54.17 | 1300 | 1.3082 | 0.6687 | | 0.1041 | 58.33 | 1400 | 1.2514 | 0.6177 | | 0.1024 | 62.5 | 1500 | 1.2055 | 0.6528 | | 0.0919 | 66.67 | 1600 | 1.4125 | 0.6369 | | 0.074 | 70.83 | 1700 | 1.4006 | 0.6634 | | 0.0681 | 75.0 | 1800 | 1.3943 | 0.6131 | | 0.0709 | 79.17 | 1900 | 1.3545 | 0.6296 | | 0.064 | 83.33 | 2000 | 1.2437 | 0.6237 | | 0.0552 | 87.5 | 2100 | 1.3762 | 0.6190 | | 0.056 | 91.67 | 2200 | 1.3763 | 0.6323 | | 0.0514 | 95.83 | 2300 | 1.2897 | 0.6164 | | 0.0409 | 100.0 | 2400 | 1.4257 | 0.6104 | | 0.0379 | 104.17 | 2500 | 1.4219 | 0.5853 | | 0.0367 | 108.33 | 2600 | 1.4361 | 0.6032 | | 0.0412 | 112.5 | 2700 | 1.4713 | 0.6098 | | 0.0353 | 116.67 | 2800 | 1.4132 | 0.6369 | | 0.0336 | 120.83 | 2900 | 1.5210 | 0.6098 | | 0.0302 | 125.0 | 3000 | 1.4686 | 0.5939 | | 0.0398 | 129.17 | 3100 | 1.5456 | 0.6204 | | 0.0291 | 133.33 | 3200 | 1.4111 | 0.5827 | | 0.0247 | 137.5 | 3300 | 1.3866 | 0.6151 | | 0.0196 | 141.67 | 3400 | 1.4513 | 0.5880 | | 0.0218 | 145.83 | 3500 | 1.5100 | 0.5899 | | 0.0196 | 150.0 | 3600 | 1.4936 | 0.5999 | | 0.0164 | 154.17 | 3700 | 1.5012 | 0.5701 | | 0.0168 | 158.33 | 3800 | 1.5601 | 0.5919 | | 0.0151 | 162.5 | 3900 | 1.4891 | 0.5761 | | 0.0137 | 166.67 | 4000 | 1.4839 | 0.5800 | | 0.0143 | 170.83 | 4100 | 1.4826 | 0.5754 | | 0.0114 | 175.0 | 4200 | 1.4950 | 0.5708 | | 0.0092 | 179.17 | 4300 | 1.5008 | 0.5694 | | 0.0104 | 183.33 | 4400 | 1.4774 | 0.5728 | | 0.0096 | 187.5 | 4500 | 1.4948 | 0.5767 | | 0.0105 | 191.67 | 4600 | 1.4557 | 0.5694 | | 0.009 | 195.83 | 4700 | 1.4615 | 0.5628 | | 0.0081 | 200.0 | 4800 | 1.4638 | 0.5602 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0