--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - sl - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-sl-a2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 0.21695212999560826 - name: Test CER type: cer value: 0.052850080572474256 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: vot metrics: - name: Test WER type: wer value: 0.560722380639029 - name: Test CER type: cer value: 0.2279626093074681 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Test WER type: wer value: 56.07 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 56.19 --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2855 - Wer: 0.2401 ##Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-sl-a2 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Votic language not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.9294 | 6.1 | 500 | 2.9712 | 1.0 | | 2.8305 | 12.2 | 1000 | 1.7073 | 0.9479 | | 1.4795 | 18.29 | 1500 | 0.5756 | 0.6397 | | 1.3433 | 24.39 | 2000 | 0.4968 | 0.5424 | | 1.1766 | 30.49 | 2500 | 0.4185 | 0.4743 | | 1.0017 | 36.59 | 3000 | 0.3303 | 0.3578 | | 0.9358 | 42.68 | 3500 | 0.3003 | 0.3051 | | 0.8358 | 48.78 | 4000 | 0.3045 | 0.2884 | | 0.7647 | 54.88 | 4500 | 0.2866 | 0.2677 | | 0.7482 | 60.98 | 5000 | 0.2829 | 0.2585 | | 0.6943 | 67.07 | 5500 | 0.2782 | 0.2478 | | 0.6586 | 73.17 | 6000 | 0.2911 | 0.2537 | | 0.6425 | 79.27 | 6500 | 0.2817 | 0.2462 | | 0.6067 | 85.37 | 7000 | 0.2910 | 0.2436 | | 0.5974 | 91.46 | 7500 | 0.2875 | 0.2430 | | 0.5812 | 97.56 | 8000 | 0.2852 | 0.2396 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0