--- tags: - generated_from_trainer - TrOCR model-index: - name: trocr-large-printed-e13b_tesseract_MICR_ocr results: [] license: bsd-3-clause language: - en metrics: - cer --- # trocr-large-printed-e13b_tesseract_MICR_ocr This model is a fine-tuned version of [microsoft/trocr-large-printed](https://huggingface.co/microsoft/trocr-large-printed). It achieves the following results on the evaluation set: - Loss: 0.2432 - CER: 0.0036 ## Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Optical%20Character%20Recognition%20(OCR)/Tesseract%20MICR%20(E15B%20Dataset)/TrOCR-e13b%20-%20tesseractMICR.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://github.com/DoubangoTelecom/tesseractMICR/tree/master/datasets/e13b __Histogram of Label Character Lengths__ ![Histogram of Label Character Lengths](https://raw.githubusercontent.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/main/Optical%20Character%20Recognition%20(OCR)/Tesseract%20MICR%20(E15B%20Dataset)/Images/Histogram%20of%20Label%20Character%20Length.png) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | CER | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.486 | 1.0 | 841 | 0.5168 | 0.0428 | | 0.2187 | 2.0 | 1682 | 0.2432 | 0.0036 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3