--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - recall - precision model-index: - name: vit-base-patch16-224-in21k_brain_tumor_diagnosis results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9215686274509803 - name: F1 type: f1 value: 0.9375 - name: Recall type: recall value: 1 - name: Precision type: precision value: 0.8823529411764706 language: - en pipeline_tag: image-classification --- # vit-base-patch16-224-in21k_brain_tumor_diagnosis This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2591 - Accuracy: 0.9216 - F1: 0.9375 - Recall: 1.0 - Precision: 0.8824 ## Model description This is a binary classification model to distinguish between if the MRI images detect a brain tumor or not. For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Binary%20Classification/Brain%20Tumor%20MRI%20Images/brain_tumor_MRI_Images_ViT.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection _Sample Images From Dataset:_ ![Sample Images](https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/raw/main/Computer%20Vision/Image%20Classification/Binary%20Classification/Brain%20Tumor%20MRI%20Images/Images/Sample%20Images.png) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.7101 | 1.0 | 13 | 0.3351 | 0.9412 | 0.9474 | 0.9 | 1.0 | | 0.7101 | 2.0 | 26 | 0.3078 | 0.9020 | 0.9231 | 1.0 | 0.8571 | | 0.7101 | 3.0 | 39 | 0.2591 | 0.9216 | 0.9375 | 1.0 | 0.8824 | | 0.7101 | 4.0 | 52 | 0.2702 | 0.9020 | 0.9123 | 0.8667 | 0.9630 | | 0.7101 | 5.0 | 65 | 0.2855 | 0.9020 | 0.9123 | 0.8667 | 0.9630 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.12.1