--- base_model: uitnlp/visobert tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: facebook-commet-classification-small results: [] --- # facebook-commet-classification-small This model is a fine-tuned version of [uitnlp/visobert](https://huggingface.co/uitnlp/visobert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1605 - Accuracy: 0.9427 - F1: 0.7552 - Precision: 0.8298 - Recall: 0.6929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2261 | 1.0 | 990 | 0.1605 | 0.9427 | 0.7552 | 0.8298 | 0.6929 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2