--- license: apache-2.0 datasets: - yuvalkirstain/pickapic_v2 base_model: - stable-diffusion-v1-5/stable-diffusion-v1-5 library_name: diffusers pipeline_tag: text-to-image tags: - text-generation-inference --- Pretrained SD-1.5 weight for [SePPO: Semi-Policy Preference Optimization for Diffusion Alignment](https://huggingface.co/papers/2410.05255) See Github Repo: [SePPO](https://github.com/DwanZhang-AI/SePPO/tree/main) Paper Report: [Daily Paper](https://huggingface.co/papers/2410.05255) Inference Code: ``` import os import argparse import numpy as np import torch from diffusers import StableDiffusionPipeline, UNet2DConditionModel from PIL import Image torch.set_grad_enabled(False) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Generate images and calculate scores.") parser.add_argument('--unet_checkpoint', type=str, required=True, help="Path to the UNet model checkpoint") parser.add_argument('--prompt', type=str, required=True, help="Prompt") args = parser.parse_args() unet = UNet2DConditionModel.from_pretrained(args.unet_checkpoint, torch_dtype=torch.float16).to('cuda') pipe = StableDiffusionPipeline.from_pretrained("pt-sk/stable-diffusion-1.5", torch_dtype=torch.float16) pipe = pipe.to('cuda') pipe.safety_checker = None pipe.unet = unet generator = torch.Generator(device='cuda').manual_seed(0) gs = 7.5 ims = pipe(prompt=args.prompt, generator=generator, guidance_scale=gs).images[0] img_path = os.path.join('SePPO', "0.png") if isinstance(ims, np.ndarray): ims = Image.fromarray(ims) ims.save(img_path, format='PNG') ```