--- license: apache-2.0 language: - en - fr - de - es - pt - it - sl - el - nl library_name: gliner pipeline_tag: token-classification --- # Model Card for GLiNER PII Domains GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios. This model has been trained by fine-tuning `urchade/gliner_multi_pii-v1` on the synthetic dataset covering PPIs for the domains: `healthcare`, `finance`, `legal`, `banking` and `general`. This model is capable of recognizing various types of *personally identifiable information* (PII), including but not limited to these entity types: `person`, `organization`, `phone number`, `address`, `passport number`, `email`, `credit card number`, `social security number`, `health insurance id number`, `date of birth`, `mobile phone number`, `bank account number`, `medication`, `cpf`, `driver's license number`, `tax identification number`, `medical condition`, `identity card number`, `national id number`, `ip address`, `email address`, `iban`, `credit card expiration date`, `username`, `health insurance number`, `registration number`, `student id number`, `insurance number`, `flight number`, `landline phone number`, `blood type`, `cvv`, `reservation number`, `digital signature`, `social media handle`, `license plate number`, `cnpj`, `postal code`, `passport number`, `serial number`, `vehicle registration number`, `credit card brand`, `fax number`, `visa number`, `insurance company`, `identity document number`, `transaction number`, `national health insurance number`, `cvc`, `birth certificate number`, `train ticket number`, `passport expiration date`, and `social security number`. ## English example ```python text = """ Medical Record Patient Name: John Doe Date of Birth: 15-01-1985 Date of Examination: 20-05-2024 Social Security Number: 123-45-6789 Examination Procedure: John Doe underwent a routine physical examination. The procedure included measuring vital signs (blood pressure, heart rate, temperature), a comprehensive blood panel, and a cardiovascular stress test. The patient also reported occasional headaches and dizziness, prompting a neurological assessment and an MRI scan to rule out any underlying issues. Medication Prescribed: Ibuprofen 200 mg: Take one tablet every 6-8 hours as needed for headache and pain relief. Lisinopril 10 mg: Take one tablet daily to manage high blood pressure. Next Examination Date: 15-11-2024 """ # Labels for entity prediction labels = ["name", "social security number", "date of birth", "date"] # Perform entity prediction entities = trained_model.predict_entities(text, labels, threshold=0.5) # Display predicted entities and their labels for entity in entities: print(entity["text"], "=>", entity["label"]) ``` ```text John Doe => name 15-01-1985 => date of birth 20-05-2024 => date 123-45-6789 => social security number John Doe => name 15-11-2024 => date ``` ## Dutch example ```python text = """ Medisch dossier Naam patiënt: Jan de Vries Geboortedatum: 15-01-1985 Datum van onderzoek: 20-05-2024 Burgerservicenummer: 987-65-4321 Onderzoeksprocedure: Jan de Vries onderging een routine lichamelijk onderzoek. De procedure omvatte het meten van de vitale functies (bloeddruk, hartslag, temperatuur), een uitgebreid bloedonderzoek en een cardiovasculaire inspanningstest. De patiënt meldde ook af en toe hoofdpijn en duizeligheid, wat aanleiding gaf tot een neurologische beoordeling en een MRI-scan om eventuele onderliggende problemen uit te sluiten. Voorgeschreven medicatie: Paracetamol 500 mg: Neem één tablet elke 6-8 uur indien nodig voor hoofdpijn en pijnverlichting. Amlodipine 5 mg: Neem één tablet dagelijks om hoge bloeddruk te beheersen. Volgende onderzoekdatum: 15-11-2024 """ # Labels for entity prediction labels = ["naam", "bmurgerservicenummer", "geboortedatum", "datum"] # Perform entity prediction entities = trained_model.predict_entities(text, labels, threshold=0.2) # Display predicted entities and their labels for entity in entities: print(entity["text"], "=>", entity["label"]) ``` ```text Jan de Vries => naam 15-01-1985 => geboortedatum 20-05-2024 => datum 987-65-4321 => bmurgerservicenummer Jan de Vries => naam 15-11-2024 => datum ```