--- license: cc-by-4.0 language: - en thumbnail: tags: - language model --- !--- # ############################################################################################## # # This model has been uploaded to HuggingFace by https://huggingface.co/drAbreu # The model is based on the NVIDIA checkpoint located at # https://catalog.ngc.nvidia.com/orgs/nvidia/models/biomegatron345muncased # # ############################################################################################## --> [BioMegatron](https://arxiv.org/pdf/2010.06060.pdf) is a transformer developed by the Applied Deep Learning Research team at NVIDIA. This particular Megatron model trained on top of the Megatron-LM model, adding a PubMed corpusto the Megatron-LM corpora(Wikipedia, RealNews, OpenWebText, and CC-Stories). BioMegatron follows a similar (albeit not identical) architecture as BERT and it has 345 million parameters: * 24 layers * 16 attention heads with a hidden size of 1024. More information available at [nVIDIA NGC CATALOG](https://catalog.ngc.nvidia.com/orgs/nvidia/models/biomegatron345muncased) # Running BioMegatron in 🤗 transformers In this implementation we have followed the commands of the [`nvidia/megatron-bert-uncased-345m`](https://huggingface.co/nvidia/megatron-bert-uncased-345m) repository to make BioMegatron available in 🤗. However, the file [`convert_megatron_bert_checkpoint.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py) needed a modification. The reason is that the Megatron model shown in [`nvidia/megatron-bert-uncased-345m`](https://huggingface.co/nvidia/megatron-bert-uncased-345m) has included head layers, while the weights of the BioMegatron model that we upload to this repository do not contain a head. We provide in the repository an alternative version of the [python script](https://huggingface.co/EMBO/BioMegatron345mUncased/blob/main/convert_biomegatron_checkpoint.py) in order to any user to cross-check the validity of the model replicated in this repository. The code below is a modification of the original [`convert_megatron_bert_checkpoint.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py). ```python import os import torch from convert_biomegatron_checkpoint import convert_megatron_checkpoint print_checkpoint_structure = True path_to_checkpoint = "/path/to/BioMegatron345mUncased/" # Extract the basename. basename = os.path.dirname(path_to_checkpoint).split('/')[-1] # Load the model. input_state_dict = torch.load(os.path.join(path_to_checkpoint, 'model_optim_rng.pt'), map_location="cpu") # Convert. print("Converting") output_state_dict, output_config = convert_megatron_checkpoint(input_state_dict, head_model=False) # Print the structure of converted state dict. if print_checkpoint_structure: recursive_print(None, output_state_dict) # Store the config to file. output_config_file = os.path.join(path_to_checkpoint, "config.json") print(f'Saving config to "{output_config_file}"') with open(output_config_file, "w") as f: json.dump(output_config, f) # Store the state_dict to file. output_checkpoint_file = os.path.join(path_to_checkpoint, "pytorch_model.bin") print(f'Saving checkpoint to "{output_checkpoint_file}"') torch.save(output_state_dict, output_checkpoint_file) ``` BioMegatron can be run with the standard 🤗 script for loading models. Here we show an example identical to that of [`nvidia/megatron-bert-uncased-345m`](https://huggingface.co/nvidia/megatron-bert-uncased-345m). ```python import os import torch from transformers import BertTokenizer, MegatronBertForMaskedLM, AutoModelForMaskedLM checkpoint = "EMBO/BioMegatron345mUncased" # The tokenizer. Megatron was trained with standard tokenizer(s). tokenizer = BertTokenizer.from_pretrained(checkpoint) # Load the model from $MYDIR/nvidia/megatron-bert-uncased-345m. model = AutoModelForMaskedLM.from_pretrained(checkpoint) device = torch.device("cpu") # Create inputs (from the BERT example page). input = tokenizer("The capital of France is [MASK]", return_tensors="pt").to(device) label = tokenizer("The capital of France is Paris", return_tensors="pt")["input_ids"].to(device) # Run the model. with torch.no_grad(): output = model(**input, labels=label) print(output) ``` # Limitations This implementation has not been fine-tuned in any task. It has only the weights of the official nVIDIA checkpoint. It needs to be trained to perform any downstream task. # Original code The original code for Megatron can be found here: [https://github.com/NVIDIA/Megatron-LM](https://github.com/NVIDIA/Megatron-LM).