--- license: apache-2.0 tags: - generated_from_trainer datasets: - EMBO/SourceData metrics: - precision - recall - f1 model-index: - name: SourceData_GP-CHEM-ROLES_v_2-0-3_BioLinkBERT_large results: - task: name: Token Classification type: token-classification dataset: name: source_data type: source_data args: ROLES_MULTI metrics: - name: Precision type: precision value: 0.9656922807631717 - name: Recall type: recall value: 0.9742186120430867 - name: F1 type: f1 value: 0.9699367088607594 --- # SourceData_GP-CHEM-ROLES_v_2-0-3_BioLinkBERT_large This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the source_data dataset. It achieves the following results on the evaluation set: - Loss: 0.0061 - Accuracy Score: 0.9982 - Precision: 0.9657 - Recall: 0.9742 - F1: 0.9699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 32 - eval_batch_size: 256 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:| | 0.0099 | 1.0 | 942 | 0.0061 | 0.9982 | 0.9657 | 0.9742 | 0.9699 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0a0+bfe5ad2 - Datasets 2.10.1 - Tokenizers 0.12.1