--- language: pt datasets: - Common Voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned with Common Voice and TTS-Portuguese Corpus in Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test Common Voice 7.0 WER type: wer value: 20.39 --- # Wav2vec2 Large 100k Voxpopuli fine-tuned with Common Voice and TTS-Portuguese Corpus in Portuguese [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Portuguese using the Common Voice 7.0 and TTS-Portuguese Corpus. # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-portuguese") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-portuguese") ``` # Results For the results check the [paper](https://arxiv.org/abs/2204.00618) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-6.1-2020-12-11") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```