--- license: llama2 --- This model is a merged model of [meta Llama2](https://ai.meta.com/llama/) and [EdwardYu/llama-2-7b-MedQuAD](https://huggingface.co/EdwardYu/llama-2-7b-MedQuAD). ## Usage ```python model_name = "EdwardYu/llama-2-7b-MedQuAD-merged" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, load_in_4bit=True, torch_dtype=torch.bfloat16, device_map="auto", quantization_config=BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ), ) question = 'What are the side effects or risks of Glucagon?' inputs = tokenizer(question, return_tensors="pt").to("cuda") outputs = model.generate(inputs=inputs.input_ids, max_length=1024) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` To run model inference faster, you can load in 16-bits without 4-bit quantization. ```python model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto", ) model = PeftModel.from_pretrained(model, adapter) ```