--- base_model: dbmdz/bert-large-cased-finetuned-conll03-english tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: large-bert-cased-ner-finetuned-wikineural-final results: [] --- # large-bert-cased-ner-finetuned-wikineural-final This model is a fine-tuned version of [dbmdz/bert-large-cased-finetuned-conll03-english](https://huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0473 - Precision: 0.9055 - Recall: 0.9156 - F1: 0.9105 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 9 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.04 | 1.0 | 10321 | 0.0473 | 0.9055 | 0.9156 | 0.9105 | 0.9860 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1