--- license: apache-2.0 base_model: Qwen/Qwen2-0.5B-Instruct tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - princeton-nlp/llama3-ultrafeedback model-index: - name: qwen2-0.5b-instruct-simpo-lr-5e-07-gamma-1.5 results: [] --- ## Description This model was trained as part of the Reinforcement Learning - 24 project at Peking University, focusing on [simpo]. ## Authors - Ejafa Bassam - Yaroslav Ponomarenko # qwen2-0.5b-instruct-simpo-lr-5e-07-gamma-1.5 This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the princeton-nlp/llama3-ultrafeedback dataset. It achieves the following results on the evaluation set: - Loss: 1.6594 - Rewards/chosen: -3.3473 - Rewards/rejected: -3.4798 - Rewards/accuracies: 0.5282 - Rewards/margins: 0.1325 - Logps/rejected: -1.3919 - Logps/chosen: -1.3389 - Logits/rejected: -5.2419 - Logits/chosen: -5.3398 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.6693 | 0.8549 | 400 | 1.6598 | -3.3421 | -3.4735 | 0.5282 | 0.1314 | -1.3894 | -1.3368 | -5.2590 | -5.3573 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1