--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: clean-chimp-516 results: [] --- # clean-chimp-516 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1555 - Hamming Loss: 0.0573 - Zero One Loss: 0.4100 - Jaccard Score: 0.3526 - Hamming Loss Optimised: 0.0556 - Hamming Loss Threshold: 0.5917 - Zero One Loss Optimised: 0.4075 - Zero One Loss Threshold: 0.5180 - Jaccard Score Optimised: 0.3191 - Jaccard Score Threshold: 0.2860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.651418456743375e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.956179116410945,0.8750477528228764) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.1691 | 0.0649 | 0.5188 | 0.4740 | 0.064 | 0.5111 | 0.4938 | 0.2835 | 0.3735 | 0.2151 | | No log | 2.0 | 200 | 0.1540 | 0.061 | 0.4313 | 0.3716 | 0.0574 | 0.5944 | 0.4263 | 0.4263 | 0.3226 | 0.2889 | | No log | 3.0 | 300 | 0.1555 | 0.0573 | 0.4100 | 0.3526 | 0.0556 | 0.5917 | 0.4075 | 0.5180 | 0.3191 | 0.2860 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0