--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: defiant-cow-743 results: [] --- # defiant-cow-743 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1694 - Hamming Loss: 0.0587 - Zero One Loss: 0.3888 - Jaccard Score: 0.3282 - Hamming Loss Optimised: 0.0546 - Hamming Loss Threshold: 0.7112 - Zero One Loss Optimised: 0.385 - Zero One Loss Threshold: 0.5227 - Jaccard Score Optimised: 0.3043 - Jaccard Score Threshold: 0.3381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.559719999499729e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9012137258321917,0.9887626606614206) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.1620 | 0.0604 | 0.475 | 0.4250 | 0.0595 | 0.5386 | 0.4363 | 0.3884 | 0.3294 | 0.3229 | | No log | 2.0 | 200 | 0.1549 | 0.0563 | 0.3862 | 0.3276 | 0.0561 | 0.6040 | 0.3875 | 0.5045 | 0.3064 | 0.3565 | | No log | 3.0 | 300 | 0.1694 | 0.0587 | 0.3888 | 0.3282 | 0.0546 | 0.7112 | 0.385 | 0.5227 | 0.3043 | 0.3381 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0