--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: honorable-shrew-498 results: [] --- # honorable-shrew-498 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1625 - Hamming Loss: 0.055 - Zero One Loss: 0.3725 - Jaccard Score: 0.3189 - Hamming Loss Optimised: 0.0541 - Hamming Loss Threshold: 0.7220 - Zero One Loss Optimised: 0.3712 - Zero One Loss Threshold: 0.4879 - Jaccard Score Optimised: 0.2997 - Jaccard Score Threshold: 0.2962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.935925952705373e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.8778562665922138,0.8720892866629456) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.1595 | 0.0571 | 0.4600 | 0.4159 | 0.0559 | 0.4890 | 0.4225 | 0.3826 | 0.3403 | 0.2310 | | No log | 2.0 | 200 | 0.1476 | 0.0564 | 0.3975 | 0.3373 | 0.0551 | 0.5746 | 0.3875 | 0.4361 | 0.2977 | 0.2865 | | No log | 3.0 | 300 | 0.1625 | 0.055 | 0.3725 | 0.3189 | 0.0541 | 0.7220 | 0.3712 | 0.4879 | 0.2997 | 0.2962 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0