--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: marvelous-cat-327 results: [] --- # marvelous-cat-327 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1549 - Hamming Loss: 0.0581 - Zero One Loss: 0.4087 - Jaccard Score: 0.3522 - Hamming Loss Optimised: 0.0566 - Hamming Loss Threshold: 0.6291 - Zero One Loss Optimised: 0.3875 - Zero One Loss Threshold: 0.4442 - Jaccard Score Optimised: 0.3185 - Jaccard Score Threshold: 0.2459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.981063961904907e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.913862773872536,0.981775961733248) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.1647 | 0.0635 | 0.485 | 0.4364 | 0.062 | 0.5617 | 0.4675 | 0.4177 | 0.3514 | 0.2886 | | No log | 2.0 | 200 | 0.1537 | 0.0591 | 0.405 | 0.3445 | 0.0587 | 0.5717 | 0.4025 | 0.4646 | 0.3214 | 0.4353 | | No log | 3.0 | 300 | 0.1549 | 0.0581 | 0.4087 | 0.3522 | 0.0566 | 0.6291 | 0.3875 | 0.4442 | 0.3185 | 0.2459 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0