--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: upset-auk-708 results: [] --- # upset-auk-708 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3263 - Hamming Loss: 0.1113 - Zero One Loss: 0.9875 - Jaccard Score: 0.9869 - Hamming Loss Optimised: 0.1077 - Hamming Loss Threshold: 0.3523 - Zero One Loss Optimised: 0.785 - Zero One Loss Threshold: 0.2199 - Jaccard Score Optimised: 0.7435 - Jaccard Score Threshold: 0.2046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.090012056785563e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9422410857324217,0.913862773872536) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.4186 | 0.1174 | 0.9862 | 0.9842 | 0.1123 | 0.7028 | 0.9275 | 0.3569 | 0.8325 | 0.3103 | | No log | 2.0 | 200 | 0.3414 | 0.1125 | 0.9988 | 0.9988 | 0.1123 | 0.5944 | 0.8362 | 0.2346 | 0.7740 | 0.2016 | | No log | 3.0 | 300 | 0.3295 | 0.1116 | 0.9912 | 0.9912 | 0.1091 | 0.3329 | 0.7875 | 0.2167 | 0.7499 | 0.2120 | | No log | 4.0 | 400 | 0.3263 | 0.1113 | 0.9875 | 0.9869 | 0.1077 | 0.3523 | 0.785 | 0.2199 | 0.7435 | 0.2046 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0