--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: victorious-moose-736 results: [] --- # victorious-moose-736 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1689 - Hamming Loss: 0.0619 - Zero One Loss: 0.4450 - Jaccard Score: 0.3857 - Hamming Loss Optimised: 0.0592 - Hamming Loss Threshold: 0.7299 - Zero One Loss Optimised: 0.4387 - Zero One Loss Threshold: 0.4119 - Jaccard Score Optimised: 0.3464 - Jaccard Score Threshold: 0.2462 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.115467719563917e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.8101446041573426,0.9056914031952074) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.1830 | 0.0644 | 0.5162 | 0.4740 | 0.0643 | 0.4982 | 0.4975 | 0.3276 | 0.3889 | 0.2962 | | No log | 2.0 | 200 | 0.1643 | 0.062 | 0.4625 | 0.3920 | 0.0597 | 0.6455 | 0.4587 | 0.4816 | 0.3518 | 0.2755 | | No log | 3.0 | 300 | 0.1678 | 0.0636 | 0.4550 | 0.3934 | 0.0595 | 0.7017 | 0.4425 | 0.3683 | 0.3441 | 0.2888 | | No log | 4.0 | 400 | 0.1689 | 0.0619 | 0.4450 | 0.3857 | 0.0592 | 0.7299 | 0.4387 | 0.4119 | 0.3464 | 0.2462 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0