--- license: apache-2.0 pipeline_tag: text-generation tags: - ONNX - DML - DirectML - ONNXRuntime - mistral - conversational - custom_code inference: false --- # Mistral-7B-Instruct-v0.3 ONNX ## Model Summary This model is an ONNX-optimized version of [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3), designed to provide accelerated inference on a variety of hardware using ONNX Runtime(CPU and DirectML). DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning, providing GPU acceleration for a wide range of supported hardware and drivers, including AMD, Intel, NVIDIA, and Qualcomm GPUs. ## ONNX Models Here are some of the optimized configurations we have added: - **ONNX model for int4 DML:** ONNX model for AMD, Intel, and NVIDIA GPUs on Windows, quantized to int4 using AWQ. - **ONNX model for int4 CPU and Mobile:** ONNX model for CPU and mobile using int4 quantization via RTN. There are two versions uploaded to balance latency vs. accuracy. Acc=1 is targeted at improved accuracy, while Acc=4 is for improved performance. For mobile devices, we recommend using the model with acc-level-4. ## Usage ### Installation and Setup To use the Mistral-7B-Instruct-v0.3 ONNX model on Windows with DirectML, follow these steps: 1. **Create and activate a Conda environment:** ```sh conda create -n onnx python=3.10 conda activate onnx ``` 2. **Install Git LFS:** ```sh winget install -e --id GitHub.GitLFS ``` 3. **Install Hugging Face CLI:** ```sh pip install huggingface-hub[cli] ``` 4. **Download the model:** ```sh huggingface-cli download EmbeddedLLM/mistral-7b-instruct-v0.3-onnx --include="onnx/directml/*" --local-dir .\mistral-7b-instruct-v0.3 ``` 5. **Install necessary Python packages:** ```sh pip install numpy pip install onnxruntime-directml pip install --pre onnxruntime-genai-directml ``` 6. **Install Visual Studio 2015 runtime:** ```sh conda install conda-forge::vs2015_runtime ``` 7. **Download the example script:** ```sh Invoke-WebRequest -Uri "https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi3-qa.py" -OutFile "phi3-qa.py" ``` 8. **Run the example script:** ```sh python phi3-qa.py -m .\mistral-7b-instruct-v0.3 ``` ### Hardware Requirements - **Minimum Configuration:** - **Windows:** DirectX 12-capable GPU (AMD/Nvidia) - **CPU:** x86_64 / ARM64 - **Tested Configurations:** - **GPU:** AMD Ryzen 8000 Series iGPU (DirectML) - **CPU:** AMD Ryzen CPU ## Model Description - **Developed by:** Mistral AI - **Model type:** ONNX - **Language(s) (NLP):** Python, C, C++ - **License:** Apache License Version 2.0 - **Model Description:** This model is a conversion of the Mistral-7B-Instruct-v0.3 for ONNX Runtime inference, optimized for CPU and DirectML.