--- language: - ac license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - tericlabs metrics: - wer model-index: - name: Whisper base acholi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Sunbird type: tericlabs metrics: - name: Wer type: wer value: 122.26379794200186 --- # Whisper base acholi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Sunbird dataset. It achieves the following results on the evaluation set: - Loss: 2.8895 - Wer: 122.2638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.2321 | 3.32 | 1000 | 2.9610 | 140.3181 | | 2.5056 | 6.64 | 2000 | 2.7358 | 116.9317 | | 2.0671 | 9.97 | 3000 | 2.7957 | 144.9953 | | 1.7382 | 13.29 | 4000 | 2.8895 | 122.2638 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2