--- language: - en license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - QEC metrics: - wer model-index: - name: whisper-medium-quartr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Quartr Earnings Calls type: QEC args: 'config: en, split: test' metrics: - name: Wer type: wer value: 22.31368880573745 --- # whisper-medium-quartr This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Quartr Earnings Calls dataset. It achieves the following results on the evaluation set: - Loss: 0.6825 - Wer: 22.3137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.120528078446462e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 84 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5817 | 0.32 | 100 | 0.5708 | 21.9832 | | 0.5817 | 0.64 | 200 | 0.5332 | 20.1559 | | 0.5253 | 0.96 | 300 | 0.5127 | 25.4256 | | 0.3177 | 1.28 | 400 | 0.5276 | 28.5688 | | 0.3603 | 1.61 | 500 | 0.5195 | 22.2950 | | 0.3374 | 1.93 | 600 | 0.5101 | 24.3343 | | 0.1734 | 2.25 | 700 | 0.5530 | 23.1743 | | 0.2002 | 2.57 | 800 | 0.5525 | 21.1537 | | 0.1894 | 2.89 | 900 | 0.5589 | 21.7774 | | 0.0868 | 3.21 | 1000 | 0.6291 | 23.4487 | | 0.0931 | 3.53 | 1100 | 0.6410 | 21.9208 | | 0.1094 | 3.85 | 1200 | 0.6339 | 22.5008 | | 0.1007 | 4.17 | 1300 | 0.6698 | 21.7524 | | 0.0652 | 4.49 | 1400 | 0.6820 | 22.3262 | | 0.0614 | 4.82 | 1500 | 0.6825 | 22.3137 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.1.dev0 - Tokenizers 0.15.2