--- language: - fr license: apache-2.0 base_model: openai/whisper-tiny.en tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Adrien le Grand results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: fr split: test[:1%] args: 'config: fr, split: test' metrics: - name: Wer type: wer value: 96.5565706254392 --- # Adrien le Grand This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 2.3909 - Wer: 96.5566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.6081 | 0.32 | 100 | 3.9453 | 134.0126 | | 2.5974 | 0.64 | 200 | 3.0204 | 123.6824 | | 2.1327 | 0.96 | 300 | 2.5791 | 100.7730 | | 1.7696 | 1.27 | 400 | 2.4342 | 101.4055 | | 1.7047 | 1.59 | 500 | 2.3909 | 96.5566 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0