--- language: - ja license: cc-by-sa-4.0 tags: - zero-shot-classification - text-classification - nli - pytorch metrics: - accuracy datasets: - JSNLI pipeline_tag: text-classification widget: - text: "あなた が 好きです 。   あなた を 愛して い ます 。" model-index: - name: roberta-base-japanese-jsnli results: - task: type: text-classification name: Natural Language Inference dataset: type: snli name: JSNLI split: dev metrics: - type: accuracy value: 0.9328 verified: false --- # roberta-base-japanese-jsnli This model is a fine-tuned version of [nlp-waseda/roberta-base-japanese](https://huggingface.co/nlp-waseda/roberta-base-japanese) on the [JSNLI](https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88) dataset. It achieves the following results on the evaluation set: - Loss: 0.2039 - Accuracy: 0.9328 ### How to use the model The input text should be segmented into words by [Juman++](https://github.com/ku-nlp/jumanpp) in advance. #### Simple zero-shot classification pipeline ```python from transformers import pipeline from pyknp import Juman juman = Juman() classifier = pipeline("zero-shot-classification", model="Formzu/roberta-base-japanese-jsnli") sequence_to_classify = " ".join([tok.midasi for tok in juman.analysis("いつか世界を見る。").mrph_list()]) candidate_labels = ['旅行', '料理', '踊り'] out = classifier(sequence_to_classify, candidate_labels, hypothesis_template="この 例 は {} です 。") print(out) #{'sequence': 'いつか 世界 を 見る 。', # 'labels': ['旅行', '踊り', '料理'], # 'scores': [0.8998081684112549, 0.06059670448303223, 0.03959512338042259]} ``` #### NLI use-case ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch from pyknp import Juman juman = Juman() device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model_name = "Formzu/roberta-base-japanese-jsnli" model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device) tokenizer = AutoTokenizer.from_pretrained(model_name) premise = " ".join([tok.midasi for tok in juman.analysis("いつか世界を見る。").mrph_list()]) label = '旅行' hypothesis = f'この 例 は {label} です 。' input = tokenizer.encode(premise, hypothesis, return_tensors='pt').to(device) with torch.no_grad(): logits = model(input)["logits"][0] probs = logits.softmax(dim=-1) print(probs.cpu().numpy(), logits.cpu().numpy()) #[0.82168734 0.1744363 0.00387629] [ 2.3362164 0.78641605 -3.0202653 ] ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4067 | 1.0 | 16657 | 0.2224 | 0.9201 | | 0.3397 | 2.0 | 33314 | 0.2152 | 0.9208 | | 0.2775 | 3.0 | 49971 | 0.2039 | 0.9328 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1