from transformers import PreTrainedModel from .configuration_efficientnetv25 import EfficientNetV25Config import torch, sys, os from huggingface_hub import hf_hub_download class EfficientNetV25ForImageClassification(PreTrainedModel): config_class = EfficientNetV25Config def __init__(self, config): super().__init__(config) repo_id = '/'.join(config.url.split('/')[3:5]) file_name = config.url.split('/')[-1] path = f"./models/{file_name}" if not os.path.exists(path): hf_hub_download(repo_id=repo_id, filename=file_name, local_dir="./models") self.model = torch.load(path) self.input_size = config.input_size shape = [2] + self.input_size example_inputs = torch.randn(shape) example_inputs = (example_inputs - example_inputs.min()) / (example_inputs.max() - example_inputs.min()) self.num_classes = config.num_classes if self.num_classes != 1000: self.model.classifier = torch.nn.Linear(in_features=1984, out_features=self.num_classes, bias=True) traced_model = torch.jit.trace(self.model, example_inputs) traced_model.save(file_name) self.model = torch.jit.load(file_name) def forward(self, tensor, labels=None): logits = self.model(tensor) if labels is not None: loss = torch.nn.cross_entropy(logits, labels) return {"loss": loss, "logits": logits} return {"logits": logits}