--- license: apache-2.0 datasets: - FreedomIntelligence/ALLaVA-4V language: - en pipeline_tag: text-generation --- # ALLaVA: Harnessing GPT4V-synthesized Data for A Lite Vision-Language Model

⚑ALLaVA is a project that provides a large-scale GPT4V-synthesized dataset for training LVLMs.⚑

πŸ“ƒ Paper β€’ 🌐 Demo β€’ πŸ‘¨πŸ»β€πŸ’» Github

πŸ€— ALLaVA-4V Dataset

πŸ€— ALLaVA-Phi3-mini-128k β€’ πŸ€— ALLaVA-StableLM2-1_6B β€’ πŸ€— ALLaVA-Phi2-2_7B

## Benchmark Result Our models [**ALLaVA-Phi3-mini-128k**](https://huggingface.co/FreedomIntelligence/ALLaVA-Phi3-mini-128k), [**ALLaVA-StableLM2-1_6B**](https://huggingface.co/FreedomIntelligence/ALLaVA-StableLM2-1_6B) and [**ALLaVA-Phi2-2_7B**](https://huggingface.co/FreedomIntelligence/ALLaVA-Phi2-2_7B) achieve competitive results on 17 benchmarks. | Models | Vicuna-80 | GQA | HallusionBench | MME-P | MMVP | TouchStone | TextVQA | MME-C | MathVista | MM-Vet | MMMU-val | SQA (img) | LLaVA (In-the-Wild) | MLLM-Bench | MMB-en | MMB-cn | SEEDBench (img, v1) | |---------------------------|-----------|-----|-------|-------|------|----|---------|-------|----|--------|-----------------|---------|---------------|----|--------|--------|--------------------| | **Large VLMs** | | | | | | | | | | | | | | | | | | | BLIP-2 | - | - | - | - | - | - | - | - | - | 22.4 | 34.4 | - | - | 3.0*| - | - | 49.7 | | InstructBLIP | - | 49.5| - | - | - | - | - | - | - | 25.6 | - | - | 58.2 | - | 44.0 | - | - | | Qwen-VL-Chat | - | 57.5| - | 1487.6| - | - | 61.5 | 360.7 | - | 31.1 | - | 68.2 | - | - | 60.6 | 56.7 | 65.4 | | LLaVA-1.5-7B | 13.8* | 62.0| 36.6* | 1504.4*| 24.7*| 594.9*| 58.2| 324.6*| 25.0*| 31.1| 35.1*| 66.8| 65.4| 23.0*| 64.3| 58.3| 66.1| | LLaVA-1.5-13B | 22.5 | 63.3| 36.5* | 1531.3 | 38.0*| 617.7*| 61.3| 295.4| 28.3*| 35.4| 34.4*| 71.6| 72.5| -| 67.7| 63.6| 68.2| | LVIS-7B | - | 62.6| - | - | - | - | 58.7 | - | - | 31.5 | - | - | 67.0 | 29.0*| 66.2 | - | - | | LVIS-13B | - | 63.6*| - | - | - | - | 62.5* | - | - | 37.4* | - | - | 71.3* | - | 68.0* | - | - | | ShareGPT4V-7B | 13.8* | 63.3| 36.0* | 1540.1*| 34.0*| 637.2*| 60.4| 346.1*| 24.7*| 37.6| 35.4*| 68.4*| 72.6| 30.2*| 68.8| 61.0*| 69.7| | ShareGPT4V-13B | 17.5* | 64.8| 39.0* | 1576.1*| 35.3*| 648.7*| 62.2| 309.3*| 28.8*| 43.1| 35.6*| 70.0*| 79.9| 35.5*| 71.2| 61.7*| 70.8| | **4B-scale Lite VLMs** | | | | | | | | | | | | | | | | | | | MobileVLM-v2 | 5.0* | 61.1| 30.8* | 1440.5 | 18.7*| 541.0*| 57.5| 261.8*| 28.3*| 26.1*| 30.8*| 70.0| 53.2*| 15.7*| 63.2| 43.2*| 64.5*| | Mipha-3B | 16.2* | **63.9**| 34.3*| **1488.9**| 32.0*| 619.0*| 56.6| 285.0*| 27.8*| 33.5*| 35.8*| 70.9| 64.7*| 23.1*| **69.7**| 42.9*| **71.2***| | TinyLLaVA | 15.6* | 62.1| 37.2* | 1465.5*| 33.3*| 663.5*| **60.3**| 281.1*| 30.3*| 37.5| 38.4| **73.0**| 70.8*| 29.8*| **69.7***| 42.8*| 70.4*| | **Ours** | | | | | | | | | | | | | | | | | | | **ALLaVA-Phi2** | 49.4 | 48.8| 24.8 | 1316.2| **36.0**| 632.0| 49.5| 301.8| 27.4| 32.2| 35.3| 67.6| 69.4| 43.6| 64.0| 40.8| 65.2| | **ALLaVA-StableLM2** | 38.8 | 49.8| 25.3 | 1311.7| 34.0 | 655.2| 51.7| 257.9| 27.7| 31.7| 33.3| 64.7| **72.0**| 39.3| 64.6| 49.8| 65.7| | **ALLaVA-Phi3** | **56.9**| 52.2| **48.1**| 1382.3| 32.7| **667.8**| 53.0| **347.1**| **32.9**| **37.8**| **41.1**| 64.0| 68.5| **54.8**| 68.1| **55.3**| 69.0| > \* denotes the results of our evaluation. **Bold numbers** are the best results among all 4B-scale LVLMs.The detailed information of each benchmark is shown in Table 4 of our [technical report](https://arxiv.org/pdf/2402.11684.pdf). ## 🏭 Inference All models can be loaded from πŸ€— with `.from_pretrained()`. Check out the [example scripts](https://github.com/FreedomIntelligence/ALLaVA/tree/main/allava/serve) and make sure you have the same outputs as shown in the scripts. ## πŸ‹οΈβ€β™‚οΈ Training ### Data
training_datasets
ALLaVA uses 1.0M and 1.5M data for PT. and FT., respectively. ### Code The training code is largely based on [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA). We wholeheartedly express our gratitude for their invaluable contributions to open-sourcing LVLMs. ### Hyperparameters | Global Batch Size| ZeRO Stage| Optimizer | Max LR| Min LR | Scheduler | Weight decay | | ---: | ---: |--:| ---: | ---: | ---: | ---: | | 256 (PT) / 128 (FT) | 1| AdamW | 2e-5 | 2e-6 | CosineAnnealingWarmRestarts | 0 | The LM backbone, projector are trainable, while the vision encoder is kept frozen. **The trainabilities of each module are the same for both stages.** ## πŸ“š ALLaVA-4V Data The majority part of training data is [ALLaVA-4V](https://huggingface.co/datasets/FreedomIntelligence/ALLaVA-4V). See [here](https://github.com/FreedomIntelligence/ALLaVA/tree/main?tab=readme-ov-file#data-preparation) to prepare it for training. ## πŸ™Œ Contributors - Project Leader: [Guiming Hardy Chen](https://g-h-chen.github.io/) - Data: Shunian Chen, [Junying Chen](https://jymchen.github.io/), Xiangbo Wu - Evaluation: [Ruifei Zhang](https://scholar.google.com/citations?user=W4zOhmEAAAAJ&hl=zh-CN) - Deployment: Xiangbo Wu, Zhiyi Zhang - Advising: [Zhihong Chen](https://zhjohnchan.github.io/), [Benyou Wang](https://wabyking.github.io/old.html) - Others: Jianquan Li, [Xiang Wan](https://scholar.google.com/citations?user=e3_kWigAAAAJ&hl=zh-CN) ## πŸ“ Citation If you find our data useful, please consider citing our work! We are FreedomIntelligence from [Shenzhen Research Institute of Big Data](http://sribd.cn/en) and [The Chinese University of Hong Kong, Shenzhen](https://sds.cuhk.edu.cn/en) ``` @article{chen2024allava, title={ALLaVA: Harnessing GPT4V-synthesized Data for A Lite Vision-Language Model}, author={Chen, Guiming Hardy and Chen, Shunian and Zhang, Ruifei and Chen, Junying and Wu, Xiangbo and Zhang, Zhiyi and Chen, Zhihong and Li, Jianquan and Wan, Xiang and Wang, Benyou}, journal={arXiv preprint arXiv:2402.11684}, year={2024} } ```