--- license: apache-2.0 datasets: - FreedomIntelligence/ApolloMoEDataset language: - ar - en - zh - ko - ja - mn - th - vi - lo - mg - de - pt - es - fr - ru - it - hr - gl - cs - co - la - uk - bs - bg - eo - sq - da - sa - gn - sr - sk - gd - lb - hi - ku - mt - he - ln - bm - sw - ig - rw - ha metrics: - accuracy base_model: - microsoft/Phi-3-mini-4k-instruct pipeline_tag: question-answering tags: - biology - medical --- # Democratizing Medical LLMs For Much More Languages Covering 12 Major Languages including English, Chinese, French, Hindi, Spanish, Arabic, Russian, Japanese, Korean, German, Italian, Portuguese and 38 Minor Languages So far.

πŸ“ƒ Paper β€’ 🌐 Demo β€’ πŸ€— ApolloMoEDataset β€’ πŸ€— ApolloMoEBench β€’ πŸ€— Models β€’πŸŒ Apollo β€’ 🌐 ApolloMoE

![Apollo](assets/apollo_medium_final.png) ## 🌈 Update * **[2024.10.15]** ApolloMoE repo is publishedοΌπŸŽ‰ ## Languages Coverage 12 Major Languages and 38 Minor Languages
Click to view the Languages Coverage ![ApolloMoE](assets/languages.png)
## Architecture
Click to view the MoE routing image ![ApolloMoE](assets/hybrid_routing.png)
## Results #### Dense πŸ€— Apollo2-0.5B β€’ πŸ€— Apollo2-1.5B β€’ πŸ€— Apollo2-2B πŸ€— Apollo2-3.8B β€’ πŸ€— Apollo2-7B β€’ πŸ€— Apollo2-9B
Click to view the Dense Models Results ![ApolloMoE](assets/dense_results.png)
#### Post-MoE πŸ€— Apollo-MoE-0.5B β€’ πŸ€— Apollo-MoE-1.5B β€’ πŸ€— Apollo-MoE-7B
Click to view the Post-MoE Models Results ![ApolloMoE](assets/post_moe_results.png)
## Usage Format ##### Apollo2 - 0.5B, 1.5B, 7B: User:{query}\nAssistant:{response}<|endoftext|> - 2B, 9B: User:{query}\nAssistant:{response}\ - 3.8B: <|user|>\n{query}<|end|><|assisitant|>\n{response}<|end|> ##### Apollo-MoE - 0.5B, 1.5B, 7B: User:{query}\nAssistant:{response}<|endoftext|> ## Dataset & Evaluation - Dataset πŸ€— ApolloMoEDataset
Click to expand ![ApolloMoE](assets/Dataset.png) - [Data category](https://huggingface.co/datasets/FreedomIntelligence/ApolloCorpus/tree/main/train)
- Evaluation πŸ€— ApolloMoEBench
Click to expand - EN: - [MedQA-USMLE](https://huggingface.co/datasets/GBaker/MedQA-USMLE-4-options) - [MedMCQA](https://huggingface.co/datasets/medmcqa/viewer/default/test) - [PubMedQA](https://huggingface.co/datasets/pubmed_qa): Because the results fluctuated too much, they were not used in the paper. - [MMLU-Medical](https://huggingface.co/datasets/cais/mmlu) - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine - ZH: - [MedQA-MCMLE](https://huggingface.co/datasets/bigbio/med_qa/viewer/med_qa_zh_4options_bigbio_qa/test) - [CMB-single](https://huggingface.co/datasets/FreedomIntelligence/CMB): Not used in the paper - Randomly sample 2,000 multiple-choice questions with single answer. - [CMMLU-Medical](https://huggingface.co/datasets/haonan-li/cmmlu) - Anatomy, Clinical_knowledge, College_medicine, Genetics, Nutrition, Traditional_chinese_medicine, Virology - [CExam](https://github.com/williamliujl/CMExam): Not used in the paper - Randomly sample 2,000 multiple-choice questions - ES: [Head_qa](https://huggingface.co/datasets/head_qa) - FR: - [Frenchmedmcqa](https://github.com/qanastek/FrenchMedMCQA) - [MMLU_FR] - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine - HI: [MMLU_HI](https://huggingface.co/datasets/FreedomIntelligence/MMLU_Hindi) - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine - AR: [MMLU_AR](https://huggingface.co/datasets/FreedomIntelligence/MMLU_Arabic) - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine - JA: [IgakuQA](https://github.com/jungokasai/IgakuQA) - KO: [KorMedMCQA](https://huggingface.co/datasets/sean0042/KorMedMCQA) - IT: - [MedExpQA](https://huggingface.co/datasets/HiTZ/MedExpQA) - [MMLU_IT] - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine - DE: [BioInstructQA](https://huggingface.co/datasets/BioMistral/BioInstructQA): German part - PT: [BioInstructQA](https://huggingface.co/datasets/BioMistral/BioInstructQA): Portuguese part - RU: [RuMedBench](https://github.com/sb-ai-lab/MedBench)
## Model Download and Inference We take Apollo-MoE-0.5B as an example 1. Login Huggingface ``` huggingface-cli login --token $HUGGINGFACE_TOKEN ``` 2. Download model to local dir ```python from huggingface_hub import snapshot_download import os local_model_dir=os.path.join('/path/to/models/dir','Apollo-MoE-0.5B') snapshot_download(repo_id="FreedomIntelligence/Apollo-MoE-0.5B", local_dir=local_model_dir) ``` 3. Inference Example ```python from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig import os local_model_dir=os.path.join('/path/to/models/dir','Apollo-MoE-0.5B') model=AutoModelForCausalLM.from_pretrained(local_model_dir,trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(local_model_dir,trust_remote_code=True) generation_config = GenerationConfig.from_pretrained(local_model_dir, pad_token_id=tokenizer.pad_token_id, num_return_sequences=1, max_new_tokens=7, min_new_tokens=2, do_sample=False, temperature=1.0, top_k=50, top_p=1.0) inputs = tokenizer('Answer direclty.\nThe capital of Mongolia is Ulaanbaatar.\nThe capital of Iceland is Reykjavik.\nThe capital of Australia is', return_tensors='pt') inputs = inputs.to(model.device) pred = model.generate(**inputs,generation_config=generation_config) print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) ``` ## Results reproduction
Click to expand We take Apollo2-7B or Apollo-MoE-0.5B as example 1. Download Dataset for project: ``` bash 0.download_data.shΒ  ``` 2. Prepare test and dev data for specific model: - Create test data for with special token ``` bash 1.data_process_test&dev.sh ``` 3. Prepare train data for specific model (Create tokenized data in advance): - You can adjust data Training order and Training Epoch in this step ``` bash 2.data_process_train.sh ``` 4. Train the model - If you want to train in Multi Nodes please refer to ./src/sft/training_config/zero_multi.yaml ``` bash 3.single_node_train.sh ``` 5. Evaluate your model: Generate score for benchmark ``` bash 4.eval.sh ```
## Citation Please use the following citation if you intend to use our dataset for training or evaluation: ``` @misc{zheng2024efficientlydemocratizingmedicalllms, title={Efficiently Democratizing Medical LLMs for 50 Languages via a Mixture of Language Family Experts}, author={Guorui Zheng and Xidong Wang and Juhao Liang and Nuo Chen and Yuping Zheng and Benyou Wang}, year={2024}, eprint={2410.10626}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2410.10626}, } ```