--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.94 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 2.0656 - Accuracy: 0.94 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0155 | 1.0 | 113 | 2.5288 | 0.86 | | 0.7164 | 2.0 | 226 | 2.2767 | 0.88 | | 0.8683 | 3.0 | 339 | 2.2711 | 0.87 | | 0.0006 | 4.0 | 452 | 2.7214 | 0.89 | | 0.4962 | 5.0 | 565 | 1.9165 | 0.92 | | 0.0 | 6.0 | 678 | 3.1595 | 0.88 | | 0.0 | 7.0 | 791 | 1.9683 | 0.91 | | 0.0 | 8.0 | 904 | 1.9617 | 0.91 | | 0.0 | 9.0 | 1017 | 2.0516 | 0.94 | | 0.0 | 10.0 | 1130 | 2.0656 | 0.94 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1