--- library_name: setfit tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: Gamenya:Gamenya oke bagus saya suka, yg saya tidak suka joystick nya pindah² ga bsa netep disatu tempat jadi pada saat mau gerak suka susah nyangkut dan ga terbiasa dg joystick yg bisa pindah² - text: 'game:kekurangan game ini, 1-) PETI terbatas : saya berharap ini diubah menjadi seperti CLASH ROYALE, karena koin di game ini tidak bisa didapat setiap waktu, Kecuali top up. 2-) Tier/rank : tolong di tambah sistem rank, karena sistem rank akan membuat banyak player bersaing dan menambah keseruan karna ada tantangan ( seperti Clash Royale ).. 3-) Sinyal & bug ( sinyal mendadak lemah dan gk bisa masuk pertandingan ) : karena game ini masih baru jadi wajar, tapi tolong diperbaiki untuk kenyamanan pemain' - text: diam:Gamenya sih udah bagus, Grafik juga bagus, pertempurannya juga udah bagus dan menarik, tapi ada masalah yang bikin kesel nih game yaitu analognya ngikut gak bisa di setting jadi diam aja, itu bikin gak nyaman banget sih buat gameplaynya. - text: analognya:Kekurangan game ini peti nya terbatas dan tolong adakan setingan analognya supaya fix posisi nya dan tolong di permudah dapat goldnya, over all game ini udah bagus - text: gara gara analog:masalah analog yang belum anda perbaiki memberikan pengalaman geme yang buruk jika Dev ingin memperbaiki masalah bug analog saya akan memberikan 5 bintang win strike saya terpecah cuma gara gara analog ini kanjud pipeline_tag: text-classification inference: false --- # SetFit Aspect Model This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. **Use this SetFit model to filter these possible aspect span candidates.** 3. Use a SetFit model to classify the filtered aspect span candidates. ## Model Details ### Model Description - **Model Type:** SetFit - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** id_core_news_trf - **SetFitABSA Aspect Model:** [Funnyworld1412/ABSA_game_squad_busters-aspect](https://huggingface.co/Funnyworld1412/ABSA_game_squad_busters-aspect) - **SetFitABSA Polarity Model:** [Funnyworld1412/ABSA_game_squad_busters-polarity](https://huggingface.co/Funnyworld1412/ABSA_game_squad_busters-polarity) - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | aspect | | | no aspect | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "Funnyworld1412/ABSA_game_squad_busters-aspect", "Funnyworld1412/ABSA_game_squad_busters-polarity", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 6 | 42.9092 | 90 | | Label | Training Sample Count | |:----------|:----------------------| | no aspect | 2181 | | aspect | 506 | ### Training Hyperparameters - batch_size: (4, 4) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 10 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:-----:|:-------------:|:---------------:| | 0.0001 | 1 | 0.3499 | - | | 0.0037 | 50 | 0.2258 | - | | 0.0074 | 100 | 0.1438 | - | | 0.0112 | 150 | 0.3667 | - | | 0.0149 | 200 | 0.2931 | - | | 0.0186 | 250 | 0.3144 | - | | 0.0223 | 300 | 0.1334 | - | | 0.0261 | 350 | 0.0919 | - | | 0.0298 | 400 | 0.3432 | - | | 0.0335 | 450 | 0.2318 | - | | 0.0001 | 1 | 0.2543 | - | | 0.0037 | 50 | 0.2765 | - | | 0.0074 | 100 | 0.254 | - | | 0.0112 | 150 | 0.0406 | - | | 0.0149 | 200 | 0.0707 | - | | 0.0186 | 250 | 0.0344 | - | | 0.0223 | 300 | 0.0112 | - | | 0.0261 | 350 | 0.4567 | - | | 0.0298 | 400 | 0.2479 | - | | 0.0335 | 450 | 0.0487 | - | | 0.0372 | 500 | 0.1762 | - | | 0.0409 | 550 | 0.1578 | - | | 0.0447 | 600 | 0.319 | - | | 0.0484 | 650 | 0.0443 | - | | 0.0521 | 700 | 0.42 | - | | 0.0558 | 750 | 0.1629 | - | | 0.0595 | 800 | 0.2677 | - | | 0.0633 | 850 | 0.0027 | - | | 0.0670 | 900 | 0.2256 | - | | 0.0707 | 950 | 0.0044 | - | | 0.0744 | 1000 | 0.0248 | - | | 0.0782 | 1050 | 0.0387 | - | | 0.0819 | 1100 | 0.0129 | - | | 0.0856 | 1150 | 0.0867 | - | | 0.0893 | 1200 | 0.0801 | - | | 0.0930 | 1250 | 0.1524 | - | | 0.0968 | 1300 | 0.3153 | - | | 0.1005 | 1350 | 0.1654 | - | | 0.1042 | 1400 | 0.0051 | - | | 0.1079 | 1450 | 0.0131 | - | | 0.1116 | 1500 | 0.0052 | - | | 0.1154 | 1550 | 0.0153 | - | | 0.1191 | 1600 | 0.1445 | - | | 0.1228 | 1650 | 0.0005 | - | | 0.1265 | 1700 | 0.0021 | - | | 0.1303 | 1750 | 0.3321 | - | | 0.1340 | 1800 | 0.1726 | - | | 0.1377 | 1850 | 0.3157 | - | | 0.1414 | 1900 | 0.0264 | - | | 0.1451 | 1950 | 0.2539 | - | | 0.1489 | 2000 | 0.1556 | - | | 0.1526 | 2050 | 0.0294 | - | | 0.1563 | 2100 | 0.1472 | - | | 0.1600 | 2150 | 0.0203 | - | | 0.1638 | 2200 | 0.2612 | - | | 0.1675 | 2250 | 0.0182 | - | | 0.1712 | 2300 | 0.4155 | - | | 0.1749 | 2350 | 0.0143 | - | | 0.1786 | 2400 | 0.0013 | - | | 0.1824 | 2450 | 0.36 | - | | 0.1861 | 2500 | 0.2805 | - | | 0.1898 | 2550 | 0.1571 | - | | 0.1935 | 2600 | 0.0925 | - | | 0.1972 | 2650 | 0.1762 | - | | 0.2010 | 2700 | 0.2168 | - | | 0.2047 | 2750 | 0.0002 | - | | 0.2084 | 2800 | 0.0706 | - | | 0.2121 | 2850 | 0.5384 | - | | 0.2159 | 2900 | 0.0003 | - | | 0.2196 | 2950 | 0.3476 | - | | 0.2233 | 3000 | 0.0143 | - | | 0.2270 | 3050 | 0.0052 | - | | 0.2307 | 3100 | 0.1282 | - | | 0.2345 | 3150 | 0.0004 | - | | 0.2382 | 3200 | 0.0165 | - | | 0.2419 | 3250 | 0.0077 | - | | 0.2456 | 3300 | 0.011 | - | | 0.2493 | 3350 | 0.0098 | - | | 0.2531 | 3400 | 0.0104 | - | | 0.2568 | 3450 | 0.0378 | - | | 0.2605 | 3500 | 0.0294 | - | | 0.2642 | 3550 | 0.1213 | - | | 0.2680 | 3600 | 0.0 | - | | 0.2717 | 3650 | 0.0021 | - | | 0.2754 | 3700 | 0.0017 | - | | 0.2791 | 3750 | 0.0273 | - | | 0.2828 | 3800 | 0.012 | - | | 0.2866 | 3850 | 0.008 | - | | 0.2903 | 3900 | 0.0047 | - | | 0.2940 | 3950 | 0.0034 | - | | 0.2977 | 4000 | 0.0006 | - | | 0.3015 | 4050 | 0.1756 | - | | 0.3052 | 4100 | 0.1939 | - | | 0.3089 | 4150 | 0.1627 | - | | 0.3126 | 4200 | 0.0004 | - | | 0.3163 | 4250 | 0.2098 | - | | 0.3201 | 4300 | 0.002 | - | | 0.3238 | 4350 | 0.2378 | - | | 0.3275 | 4400 | 0.2552 | - | | 0.3312 | 4450 | 0.0074 | - | | 0.3349 | 4500 | 0.002 | - | | 0.3387 | 4550 | 0.0152 | - | | 0.3424 | 4600 | 0.0031 | - | | 0.3461 | 4650 | 0.0684 | - | | 0.3498 | 4700 | 0.0023 | - | | 0.3536 | 4750 | 0.2301 | - | | 0.3573 | 4800 | 0.0155 | - | | 0.3610 | 4850 | 0.0774 | - | | 0.3647 | 4900 | 0.0005 | - | | 0.3684 | 4950 | 0.0013 | - | | 0.3722 | 5000 | 0.055 | - | | 0.3759 | 5050 | 0.006 | - | | 0.3796 | 5100 | 0.0534 | - | | 0.3833 | 5150 | 0.2006 | - | | 0.3870 | 5200 | 0.2059 | - | | 0.3908 | 5250 | 0.2467 | - | | 0.3945 | 5300 | 0.0038 | - | | 0.3982 | 5350 | 0.0004 | - | | 0.4019 | 5400 | 0.0009 | - | | 0.4057 | 5450 | 0.0002 | - | | 0.4094 | 5500 | 0.2144 | - | | 0.4131 | 5550 | 0.0623 | - | | 0.4168 | 5600 | 0.0007 | - | | 0.4205 | 5650 | 0.3073 | - | | 0.4243 | 5700 | 0.0001 | - | | 0.4280 | 5750 | 0.1286 | - | | 0.4317 | 5800 | 0.179 | - | | 0.4354 | 5850 | 0.2131 | - | | 0.4392 | 5900 | 0.0005 | - | | 0.4429 | 5950 | 0.1989 | - | | 0.4466 | 6000 | 0.1981 | - | | 0.4503 | 6050 | 0.0004 | - | | 0.4540 | 6100 | 0.0001 | - | | 0.4578 | 6150 | 0.4378 | - | | 0.4615 | 6200 | 0.0008 | - | | 0.4652 | 6250 | 0.1022 | - | | 0.4689 | 6300 | 0.0002 | - | | 0.4726 | 6350 | 0.0648 | - | | 0.4764 | 6400 | 0.2756 | - | | 0.4801 | 6450 | 0.1552 | - | | 0.4838 | 6500 | 0.0524 | - | | 0.4875 | 6550 | 0.2472 | - | | 0.4913 | 6600 | 0.3239 | - | | 0.4950 | 6650 | 0.1255 | - | | 0.4987 | 6700 | 0.0293 | - | | 0.5024 | 6750 | 0.0 | - | | 0.5061 | 6800 | 0.001 | - | | 0.5099 | 6850 | 0.0008 | - | | 0.5136 | 6900 | 0.2881 | - | | 0.5173 | 6950 | 0.0002 | - | | 0.5210 | 7000 | 0.0008 | - | | 0.5247 | 7050 | 0.1938 | - | | 0.5285 | 7100 | 0.0965 | - | | 0.5322 | 7150 | 0.1608 | - | | 0.5359 | 7200 | 0.088 | - | | 0.5396 | 7250 | 0.0003 | - | | 0.5434 | 7300 | 0.0129 | - | | 0.5471 | 7350 | 0.0027 | - | | 0.5508 | 7400 | 0.0805 | - | | 0.5545 | 7450 | 0.0059 | - | | 0.5582 | 7500 | 0.2299 | - | | 0.5620 | 7550 | 0.0042 | - | | 0.5657 | 7600 | 0.0097 | - | | 0.5694 | 7650 | 0.0 | - | | 0.5731 | 7700 | 0.1738 | - | | 0.5769 | 7750 | 0.0002 | - | | 0.5806 | 7800 | 0.0003 | - | | 0.5843 | 7850 | 0.0 | - | | 0.5880 | 7900 | 0.0889 | - | | 0.5917 | 7950 | 0.0769 | - | | 0.5955 | 8000 | 0.0003 | - | | 0.5992 | 8050 | 0.0 | - | | 0.6029 | 8100 | 0.0003 | - | | 0.6066 | 8150 | 0.0 | - | | 0.6103 | 8200 | 0.0 | - | | 0.6141 | 8250 | 0.0008 | - | | 0.6178 | 8300 | 0.0002 | - | | 0.6215 | 8350 | 0.0001 | - | | 0.6252 | 8400 | 0.0004 | - | | 0.6290 | 8450 | 0.0003 | - | | 0.6327 | 8500 | 0.0052 | - | | 0.6364 | 8550 | 0.1168 | - | | 0.6401 | 8600 | 0.0029 | - | | 0.6438 | 8650 | 0.0004 | - | | 0.6476 | 8700 | 0.0003 | - | | 0.6513 | 8750 | 0.0256 | - | | 0.6550 | 8800 | 0.0473 | - | | 0.6587 | 8850 | 0.0002 | - | | 0.6624 | 8900 | 0.0001 | - | | 0.6662 | 8950 | 0.0 | - | | 0.6699 | 9000 | 0.0 | - | | 0.6736 | 9050 | 0.0 | - | | 0.6773 | 9100 | 0.1554 | - | | 0.6811 | 9150 | 0.0002 | - | | 0.6848 | 9200 | 0.037 | - | | 0.6885 | 9250 | 0.0008 | - | | 0.6922 | 9300 | 0.0 | - | | 0.6959 | 9350 | 0.0247 | - | | 0.6997 | 9400 | 0.0 | - | | 0.7034 | 9450 | 0.2489 | - | | 0.7071 | 9500 | 0.0266 | - | | 0.7108 | 9550 | 0.0002 | - | | 0.7146 | 9600 | 0.0001 | - | | 0.7183 | 9650 | 0.029 | - | | 0.7220 | 9700 | 0.0 | - | | 0.7257 | 9750 | 0.0151 | - | | 0.7294 | 9800 | 0.1482 | - | | 0.7332 | 9850 | 0.023 | - | | 0.7369 | 9900 | 0.0 | - | | 0.7406 | 9950 | 0.0005 | - | | 0.7443 | 10000 | 0.1778 | - | | 0.7480 | 10050 | 0.0002 | - | | 0.7518 | 10100 | 0.0002 | - | | 0.7555 | 10150 | 0.0 | - | | 0.7592 | 10200 | 0.0709 | - | | 0.7629 | 10250 | 0.2704 | - | | 0.7667 | 10300 | 0.3767 | - | | 0.7704 | 10350 | 0.0 | - | | 0.7741 | 10400 | 0.0177 | - | | 0.7778 | 10450 | 0.0944 | - | | 0.7815 | 10500 | 0.0421 | - | | 0.7853 | 10550 | 0.0001 | - | | 0.7890 | 10600 | 0.0001 | - | | 0.7927 | 10650 | 0.0001 | - | | 0.7964 | 10700 | 0.0003 | - | | 0.8001 | 10750 | 0.0 | - | | 0.8039 | 10800 | 0.0001 | - | | 0.8076 | 10850 | 0.0366 | - | | 0.8113 | 10900 | 0.0277 | - | | 0.8150 | 10950 | 0.0 | - | | 0.8188 | 11000 | 0.0412 | - | | 0.8225 | 11050 | 0.0001 | - | | 0.8262 | 11100 | 0.0003 | - | | 0.8299 | 11150 | 0.0 | - | | 0.8336 | 11200 | 0.0016 | - | | 0.8374 | 11250 | 0.059 | - | | 0.8411 | 11300 | 0.0 | - | | 0.8448 | 11350 | 0.0001 | - | | 0.8485 | 11400 | 0.0002 | - | | 0.8523 | 11450 | 0.0001 | - | | 0.8560 | 11500 | 0.0001 | - | | 0.8597 | 11550 | 0.1203 | - | | 0.8634 | 11600 | 0.0261 | - | | 0.8671 | 11650 | 0.0002 | - | | 0.8709 | 11700 | 0.245 | - | | 0.8746 | 11750 | 0.0 | - | | 0.8783 | 11800 | 0.0 | - | | 0.8820 | 11850 | 0.0002 | - | | 0.8857 | 11900 | 0.0318 | - | | 0.8895 | 11950 | 0.0232 | - | | 0.8932 | 12000 | 0.0 | - | | 0.8969 | 12050 | 0.0 | - | | 0.9006 | 12100 | 0.0264 | - | | 0.9044 | 12150 | 0.025 | - | | 0.9081 | 12200 | 0.0152 | - | | 0.9118 | 12250 | 0.0 | - | | 0.9155 | 12300 | 0.0001 | - | | 0.9192 | 12350 | 0.0 | - | | 0.9230 | 12400 | 0.02 | - | | 0.9267 | 12450 | 0.0073 | - | | 0.9304 | 12500 | 0.1577 | - | | 0.9341 | 12550 | 0.0207 | - | | 0.9378 | 12600 | 0.0289 | - | | 0.9416 | 12650 | 0.0001 | - | | 0.9453 | 12700 | 0.0778 | - | | 0.9490 | 12750 | 0.0712 | - | | 0.9527 | 12800 | 0.0 | - | | 0.9565 | 12850 | 0.0 | - | | 0.9602 | 12900 | 0.0 | - | | 0.9639 | 12950 | 0.0002 | - | | 0.9676 | 13000 | 0.0 | - | | 0.9713 | 13050 | 0.0001 | - | | 0.9751 | 13100 | 0.0 | - | | 0.9788 | 13150 | 0.0 | - | | 0.9825 | 13200 | 0.1664 | - | | 0.9862 | 13250 | 0.0014 | - | | 0.9900 | 13300 | 0.1693 | - | | 0.9937 | 13350 | 0.0264 | - | | 0.9974 | 13400 | 0.0027 | - | ### Framework Versions - Python: 3.10.13 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - spaCy: 3.7.5 - Transformers: 4.36.2 - PyTorch: 2.1.2 - Datasets: 2.19.2 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```