--- library_name: setfit tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: firqaaa/indo-setfit-absa-bert-base-restaurants-polarity metrics: - accuracy widget: - text: game sebenernya bagus storynya mapnya grafis pemandangan:game sebenernya bagus storynya mapnya grafis pemandangan alamnya bagus kesalahan game sistem farmingnya yg bikin frustasi player grindingnya bikin pusing yg lakuin ya sih maaf ya game ga sebagus - text: story grafik kecewa reward player gak berubah:game nya bagus story grafik kecewa reward player gak berubah rilis nambah sih apresiasi player bermain game contoh nya 3x pull tarikan gacha mengenang 3 bermain game jujur mengecewakan player gak anggap download pikir karna game kikir - text: hoyoverse ngurusin ni game seru d:game debes yg gwe temuin ampe gameplay seru story mantul map luas bgt grapik salutlah ama hoyoverse coba klo hoyoverse ngurusin ni game seru d - text: penggunaan data terlalau besarr anjj:penggunaan data terlalau besarr anjj sekalii - text: story rate 8 10:story rate 8 10 permainan yng bagus gacha bansos 10 100 pipeline_tag: text-classification inference: false --- # SetFit Polarity Model with firqaaa/indo-setfit-absa-bert-base-restaurants-polarity This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [firqaaa/indo-setfit-absa-bert-base-restaurants-polarity](https://huggingface.co/firqaaa/indo-setfit-absa-bert-base-restaurants-polarity) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. Use a SetFit model to filter these possible aspect span candidates. 3. **Use this SetFit model to classify the filtered aspect span candidates.** ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [firqaaa/indo-setfit-absa-bert-base-restaurants-polarity](https://huggingface.co/firqaaa/indo-setfit-absa-bert-base-restaurants-polarity) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** id_core_news_trf - **SetFitABSA Aspect Model:** [Funnyworld1412/ABSA_review_game_genshin_impact-aspect](https://huggingface.co/Funnyworld1412/ABSA_review_game_genshin_impact-aspect) - **SetFitABSA Polarity Model:** [Funnyworld1412/ABSA_review_game_genshin_impact-polarity](https://huggingface.co/Funnyworld1412/ABSA_review_game_genshin_impact-polarity) - **Maximum Sequence Length:** 8192 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:--------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | negatif | | | positif | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "Funnyworld1412/ABSA_review_game_genshin_impact-aspect", "Funnyworld1412/ABSA_review_game_genshin_impact-polarity", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 7 | 31.0185 | 70 | | Label | Training Sample Count | |:--------|:----------------------| | konflik | 0 | | negatif | 208 | | netral | 0 | | positif | 116 | ### Training Hyperparameters - batch_size: (4, 4) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 10 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0006 | 1 | 0.2317 | - | | 0.0309 | 50 | 0.0253 | - | | 0.0617 | 100 | 0.0008 | - | | 0.0926 | 150 | 0.4789 | - | | 0.1235 | 200 | 0.0215 | - | | 0.1543 | 250 | 0.0012 | - | | 0.1852 | 300 | 0.1843 | - | | 0.2160 | 350 | 0.0014 | - | | 0.2469 | 400 | 0.0013 | - | | 0.2778 | 450 | 0.0012 | - | | 0.3086 | 500 | 0.0016 | - | | 0.3395 | 550 | 0.0004 | - | | 0.3704 | 600 | 0.0006 | - | | 0.4012 | 650 | 0.0017 | - | | 0.4321 | 700 | 0.0012 | - | | 0.4630 | 750 | 0.0005 | - | | 0.4938 | 800 | 0.0003 | - | | 0.5247 | 850 | 0.0004 | - | | 0.5556 | 900 | 0.0006 | - | | 0.5864 | 950 | 0.2368 | - | | 0.6173 | 1000 | 0.0003 | - | | 0.6481 | 1050 | 0.0005 | - | | 0.6790 | 1100 | 0.0006 | - | | 0.7099 | 1150 | 0.0008 | - | | 0.7407 | 1200 | 0.0924 | - | | 0.7716 | 1250 | 0.0003 | - | | 0.8025 | 1300 | 0.0003 | - | | 0.8333 | 1350 | 0.0003 | - | | 0.8642 | 1400 | 0.0006 | - | | 0.8951 | 1450 | 0.0005 | - | | 0.9259 | 1500 | 0.0004 | - | | 0.9568 | 1550 | 0.0003 | - | | 0.9877 | 1600 | 0.0002 | - | | 1.0 | 1620 | - | 0.1328 | ### Framework Versions - Python: 3.10.13 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - spaCy: 3.7.5 - Transformers: 4.36.2 - PyTorch: 2.1.2 - Datasets: 2.19.2 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```