--- tags: - generated_from_trainer datasets: - Graphcore/gqa-lxmert metrics: - accuracy model-index: - name: gqa results: - task: name: Question Answering type: question-answering dataset: name: Graphcore/gqa-lxmert type: Graphcore/gqa-lxmert args: gqa metrics: - name: Accuracy type: accuracy value: 0.5933514030612245 --- # gqa This model is a fine-tuned version of [unc-nlp/lxmert-base-uncased](https://huggingface.co/unc-nlp/lxmert-base-uncased) on the [Graphcore/gqa-lxmert](https://huggingface.co/datasets/Graphcore/gqa-lxmert) dataset. It achieves the following results on the evaluation set: - Loss: 1.9326 - Accuracy: 0.5934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data [Graphcore/gqa-lxmert](https://huggingface.co/datasets/Graphcore/gqa-lxmert) dataset ## Training procedure Trained on 16 Graphcore Mk2 IPUs using [optimum-graphcore](https://github.com/huggingface/optimum-graphcore). Command line: ``` python examples/question-answering/run_vqa.py \ --model_name_or_path unc-nlp/lxmert-base-uncased \ --ipu_config_name Graphcore/lxmert-base-ipu \ --dataset_name Graphcore/gqa-lxmert \ --do_train \ --do_eval \ --max_seq_length 512 \ --per_device_train_batch_size 1 \ --num_train_epochs 4 \ --dataloader_num_workers 64 \ --logging_steps 5 \ --learning_rate 1e-5 \ --lr_scheduler_type linear \ --loss_scaling 16384 \ --weight_decay 0.01 \ --warmup_ratio 0.1 \ --output_dir /tmp/gqa/ \ --dataloader_drop_last \ --replace_qa_head \ --pod_type pod16 ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: IPU - total_train_batch_size: 64 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4.0 - training precision: Mixed Precision ### Training results ``` ***** train metrics ***** "epoch": 4.0, "train_loss": 0.6123406731570221, "train_runtime": 29986.2288, "train_samples": 943000, "train_samples_per_second": 125.791, "train_steps_per_second": 1.965 ***** eval metrics ***** "eval_accuracy": 0.5933514030612245, "eval_loss": 1.9326171875, "eval_samples": 12576, ``` ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cpu - Datasets 2.0.0 - Tokenizers 0.11.6