--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta-v3-base-finetuned-m_avoid_harm_seler results: [] --- # deberta-v3-base-finetuned-m_avoid_harm_seler This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5284 - Accuracy: 0.88 - F1: 0.9094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6798 | 1.0 | 26 | 0.6119 | 0.945 | 0.9377 | | 0.5411 | 2.0 | 52 | 0.4665 | 0.78 | 0.8484 | | 0.4348 | 3.0 | 78 | 0.4732 | 0.71 | 0.8012 | | 0.2908 | 4.0 | 104 | 0.3952 | 0.855 | 0.8943 | | 0.2341 | 5.0 | 130 | 0.5284 | 0.88 | 0.9094 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Tokenizers 0.19.1