--- license: apache-2.0 base_model: distilbert/distilbert-base-multilingual-cased tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-multilingual-cased-finetuned-ner-lenerBr results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br config: lener_br split: validation args: lener_br metrics: - name: Precision type: precision value: 0.7959714100064977 - name: Recall type: recall value: 0.7847533632286996 - name: F1 type: f1 value: 0.7903225806451614 - name: Accuracy type: accuracy value: 0.959060823521215 --- # distilbert-base-multilingual-cased-finetuned-ner-lenerBr This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: 0.1904 - Precision: 0.7960 - Recall: 0.7848 - F1: 0.7903 - Accuracy: 0.9591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 490 | 0.2124 | 0.6794 | 0.6842 | 0.6818 | 0.9363 | | 0.2601 | 2.0 | 980 | 0.1744 | 0.701 | 0.7485 | 0.7239 | 0.9486 | | 0.0688 | 3.0 | 1470 | 0.1653 | 0.7344 | 0.7598 | 0.7469 | 0.9522 | | 0.0375 | 4.0 | 1960 | 0.1868 | 0.7764 | 0.7429 | 0.7593 | 0.9546 | | 0.0229 | 5.0 | 2450 | 0.1844 | 0.7748 | 0.7854 | 0.7801 | 0.9560 | | 0.0162 | 6.0 | 2940 | 0.2072 | 0.6896 | 0.7929 | 0.7377 | 0.9462 | | 0.0123 | 7.0 | 3430 | 0.1941 | 0.7612 | 0.7704 | 0.7658 | 0.9548 | | 0.0078 | 8.0 | 3920 | 0.1900 | 0.7701 | 0.7909 | 0.7804 | 0.9581 | | 0.0068 | 9.0 | 4410 | 0.1884 | 0.8000 | 0.7822 | 0.7910 | 0.9593 | | 0.0045 | 10.0 | 4900 | 0.1904 | 0.7960 | 0.7848 | 0.7903 | 0.9591 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1