--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-large-finetuned-ner-harem results: [] --- # xlm-roberta-large-finetuned-ner-harem This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1622 - Precision: 0.8344 - Recall: 0.8412 - F1: 0.8378 - Accuracy: 0.9745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9938 | 140 | 0.1806 | 0.6310 | 0.6557 | 0.6431 | 0.9533 | | No log | 1.9947 | 281 | 0.1334 | 0.7314 | 0.7691 | 0.7497 | 0.9642 | | No log | 2.9956 | 422 | 0.1332 | 0.7751 | 0.8103 | 0.7923 | 0.9712 | | 0.2049 | 3.9965 | 563 | 0.1133 | 0.7948 | 0.8144 | 0.8045 | 0.9706 | | 0.2049 | 4.9973 | 704 | 0.1215 | 0.814 | 0.8392 | 0.8264 | 0.9748 | | 0.2049 | 5.9982 | 845 | 0.1274 | 0.8097 | 0.8247 | 0.8172 | 0.9726 | | 0.2049 | 6.9991 | 986 | 0.1725 | 0.8079 | 0.8062 | 0.8070 | 0.9687 | | 0.0307 | 8.0 | 1127 | 0.1647 | 0.8396 | 0.8309 | 0.8352 | 0.9736 | | 0.0307 | 8.9938 | 1267 | 0.1678 | 0.8420 | 0.8351 | 0.8385 | 0.9726 | | 0.0307 | 9.9379 | 1400 | 0.1622 | 0.8344 | 0.8412 | 0.8378 | 0.9745 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1