--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-large-finetuned-ner-lenerBr results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br config: lener_br split: validation args: lener_br metrics: - name: Precision type: precision value: 0.9166029074215761 - name: Recall type: recall value: 0.9289222021194107 - name: F1 type: f1 value: 0.9227214377406933 - name: Accuracy type: accuracy value: 0.9853721218641206 --- # xlm-roberta-large-finetuned-ner-lenerBr This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: nan - Precision: 0.9166 - Recall: 0.9289 - F1: 0.9227 - Accuracy: 0.9854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9995 | 489 | nan | 0.8191 | 0.8167 | 0.8179 | 0.9751 | | 0.163 | 1.9990 | 978 | nan | 0.8600 | 0.9080 | 0.8833 | 0.9790 | | 0.0427 | 2.9985 | 1467 | nan | 0.8736 | 0.9163 | 0.8944 | 0.9814 | | 0.0279 | 4.0 | 1957 | nan | 0.8688 | 0.9191 | 0.8932 | 0.9801 | | 0.019 | 4.9995 | 2446 | nan | 0.9123 | 0.9196 | 0.9159 | 0.9840 | | 0.0143 | 5.9990 | 2935 | nan | 0.9008 | 0.9346 | 0.9174 | 0.9842 | | 0.0112 | 6.9985 | 3424 | nan | 0.9063 | 0.9250 | 0.9156 | 0.9843 | | 0.0072 | 8.0 | 3914 | nan | 0.8954 | 0.9315 | 0.9131 | 0.9841 | | 0.0065 | 8.9995 | 4403 | nan | 0.9226 | 0.9245 | 0.9236 | 0.9857 | | 0.0048 | 9.9949 | 4890 | nan | 0.9166 | 0.9289 | 0.9227 | 0.9854 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3