--- license: mit library_name: peft tags: - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: fine-tuning-Phi2-with-webglm-qa-with-lora results: [] --- # fine-tuning-Phi2-with-webglm-qa-with-lora This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.2 | 10 | 8.0315 | | No log | 0.4 | 20 | 6.2055 | | No log | 0.6 | 30 | 2.7735 | | No log | 0.8 | 40 | 0.6055 | | 4.4745 | 1.0 | 50 | 0.5323 | | 4.4745 | 1.2 | 60 | 0.4631 | | 4.4745 | 1.39 | 70 | 0.4075 | | 4.4745 | 1.59 | 80 | 0.3566 | | 4.4745 | 1.79 | 90 | 0.3155 | | 0.3331 | 1.99 | 100 | 0.2869 | | 0.3331 | 2.19 | 110 | 0.2624 | | 0.3331 | 2.39 | 120 | 0.2453 | | 0.3331 | 2.59 | 130 | 0.2288 | | 0.3331 | 2.79 | 140 | 0.2095 | | 0.1947 | 2.99 | 150 | 0.1978 | | 0.1947 | 3.19 | 160 | 0.1886 | | 0.1947 | 3.39 | 170 | 0.1766 | | 0.1947 | 3.59 | 180 | 0.1691 | | 0.1947 | 3.78 | 190 | 0.1626 | | 0.1486 | 3.98 | 200 | 0.1562 | | 0.1486 | 4.18 | 210 | 0.1510 | | 0.1486 | 4.38 | 220 | 0.1489 | | 0.1486 | 4.58 | 230 | 0.1439 | | 0.1486 | 4.78 | 240 | 0.1364 | | 0.1232 | 4.98 | 250 | 0.1314 | | 0.1232 | 5.18 | 260 | 0.1306 | | 0.1232 | 5.38 | 270 | 0.1295 | | 0.1232 | 5.58 | 280 | 0.1256 | | 0.1232 | 5.78 | 290 | 0.1228 | | 0.1084 | 5.98 | 300 | 0.1195 | | 0.1084 | 6.18 | 310 | 0.1165 | | 0.1084 | 6.37 | 320 | 0.1156 | | 0.1084 | 6.57 | 330 | 0.1147 | | 0.1084 | 6.77 | 340 | 0.1120 | | 0.0964 | 6.97 | 350 | 0.1100 | | 0.0964 | 7.17 | 360 | 0.1100 | | 0.0964 | 7.37 | 370 | 0.1087 | | 0.0964 | 7.57 | 380 | 0.1080 | | 0.0964 | 7.77 | 390 | 0.1071 | | 0.0905 | 7.97 | 400 | 0.1065 | | 0.0905 | 8.17 | 410 | 0.1061 | | 0.0905 | 8.37 | 420 | 0.1053 | | 0.0905 | 8.57 | 430 | 0.1044 | | 0.0905 | 8.76 | 440 | 0.1036 | | 0.0843 | 8.96 | 450 | 0.1028 | | 0.0843 | 9.16 | 460 | 0.1021 | | 0.0843 | 9.36 | 470 | 0.1019 | | 0.0843 | 9.56 | 480 | 0.1018 | | 0.0843 | 9.76 | 490 | 0.1016 | | 0.0819 | 9.96 | 500 | 0.1016 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.15.0 - Tokenizers 0.15.0