--- language: - zh thumbnail: "url to a thumbnail used in social sharing" tags: - bart-large-chinese datasets: - lccc - kd_conv --- # dialogue-bart-large-chinese This is a seq2seq model pre-trained on several Chinese dialogue datasets, from bart-large-chinese. It's better to fine-tune it on downstream tasks for better performance. # Spaces Now you can experience our model on HuggingFace Spaces [HIT-TMG/dialogue-bart-large-chinese](https://huggingface.co/spaces/HIT-TMG/dialogue-bart-large-chinese) . # Datasets We utilize 4 Chinese dialogue datasets from [LUGE](https://www.luge.ai/#/) . | | | | | ---- | ---- | ---- | | | Count | Domain | | Chinese Persona Chat (CPC) | 23,000 | Open | | LCCC | 11,987,759 | Open | | Emotional STC (ESTC) | 899,207 | Open | | KdConv | 3,000 | Movie, Music, Travel | | | | | # Data format Input: `[CLS] 对话历史: [SEP] 知识: [SEP]` Output: `[CLS] [SEP]` # Example ```python from transformers import BertTokenizer, BartForConditionalGeneration # Note that tokenizer is an object of BertTokenizer, instead of BartTokenizer tokenizer = BertTokenizer.from_pretrained("HIT-TMG/dialogue-bart-large-chinese") model = BartForConditionalGeneration.from_pretrained("HIT-TMG/dialogue-bart-large-chinese") # an example from CPC dev data history = ["可以 认识 一下 吗 ?", "当然 可以 啦 , 你好 。", "嘿嘿 你好 , 请问 你 最近 在 忙 什么 呢 ?", "我 最近 养 了 一只 狗狗 , 我 在 训练 它 呢 。"] history_str = "对话历史:" + tokenizer.sep_token.join(history) input_ids = tokenizer(history_str, return_tensors='pt').input_ids output_ids = model.generate(input_ids)[0] print(tokenizer.decode(output_ids, skip_special_tokens=True)) ``` # Contact If you encounter any issue, feel free to contact us via the email: yanshekwoo@foxmail.com