--- license: apache-2.0 --- [Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU). It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks. Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana). ## Llama model HPU configuration This model only contains the `GaudiConfig` file for running [Llama models](https://huggingface.co/meta-llama) on Habana's Gaudi processors (HPU). **This model contains no model weights, only a GaudiConfig.** This enables to specify: - `use_fused_adam`: whether to use Habana's custom AdamW implementation - `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator - `use_torch_autocast`: whether to use PyTorch's autocast mixed precision ## Usage The model is instantiated the same way as in the Transformers library. The only difference is that there are a few new training arguments specific to HPUs. [Here](https://github.com/huggingface/optimum-habana/blob/main/examples/language-modeling/run_clm.py) is a causal language modeling example script to pre-train/fine-tune a model. You can run it with Llama with the following command: ```bash python3 run_lora_clm.py \ --model_name_or_path huggyllama/llama-7b \ --dataset_name tatsu-lab/alpaca \ --bf16 True \ --output_dir ./model_lora_llama \ --num_train_epochs 3 \ --per_device_train_batch_size 16 \ --evaluation_strategy "no" \ --save_strategy "no" \ --learning_rate 1e-4 \ --warmup_ratio 0.03 \ --lr_scheduler_type "constant" \ --max_grad_norm 0.3 \ --logging_steps 1 \ --do_train \ --do_eval \ --use_habana \ --use_lazy_mode \ --throughput_warmup_steps 3 \ --lora_rank=8 \ --lora_alpha=16 \ --lora_dropout=0.05 \ --lora_target_modules "q_proj" "v_proj" \ --dataset_concatenation \ --max_seq_length 512 \ --low_cpu_mem_usage True \ --validation_split_percentage 4 \ --adam_epsilon 1e-08 ``` You will need to install the [PEFT](https://huggingface.co/docs/peft/index) library with `pip install peft` to run the command above. Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.