--- tags: - generated_from_trainer model-index: - name: myBit-Llama2-jp-127M-4 results: [] --- # myBit-Llama2-jp-127M-4 This model has 127M parameters. The model is a pre-trained Bit-Llama2 of Parameters with only 1 epoch on a Japanese dataset. The dataset used is [range3/wiki40b-ja](https://huggingface.co/datasets/range3/wiki40b-ja). - Loss: 2.9790 ## Model description Github: [BitNet-b158](https://github.com/Hajime-Y/BitNet-b158) More information about this model can be found in the following pages: - [BitNet&BitNet b158の実装①](https://note.com/hatti8/n/nc6890e79a19a) - [BitNet&BitNet b158の実装②](https://note.com/hatti8/n/ne94f7a7d46df) ## How to use 1. install the library ``` !pip install mybitnet==0.2.3 !pip install -U accelerate transformers==4.38.2 !pip install torch ``` 2. get model ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "HachiML/myBit-Llama2-jp-127M-4" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True) print(model) ``` 3. inference ``` prompt = "昔々あるところに、" input_ids = tokenizer.encode( prompt, return_tensors="pt" ) tokens = model.generate( input_ids.to(device=model.device), max_new_tokens=128, ) out = tokenizer.decode(tokens[0], skip_special_tokens=True) print(out) ``` ## Intended uses & limitations More information needed ## Training and evaluation data - [range3/wiki40b-ja](https://huggingface.co/datasets/range3/wiki40b-ja) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0024 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - lr_scheduler_warmup_steps: 5000 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.8696 | 0.05 | 2000 | 3.8588 | | 3.7027 | 0.1 | 4000 | 3.6106 | | 3.5648 | 0.15 | 6000 | 3.5014 | | 3.448 | 0.2 | 8000 | 3.4153 | | 3.3884 | 0.25 | 10000 | 3.3650 | | 3.3462 | 0.29 | 12000 | 3.3280 | | 3.3155 | 0.34 | 14000 | 3.3053 | | 3.2932 | 0.39 | 16000 | 3.2891 | | 3.2762 | 0.44 | 18000 | 3.2673 | | 3.2594 | 0.49 | 20000 | 3.2533 | | 3.2432 | 0.54 | 22000 | 3.2398 | | 3.2286 | 0.59 | 24000 | 3.2186 | | 3.2083 | 0.64 | 26000 | 3.1957 | | 3.1867 | 0.69 | 28000 | 3.1769 | | 3.1676 | 0.74 | 30000 | 3.1568 | | 3.14 | 0.79 | 32000 | 3.1286 | | 3.114 | 0.83 | 34000 | 3.1006 | | 3.0848 | 0.88 | 36000 | 3.0696 | | 3.0511 | 0.93 | 38000 | 3.0301 | | 3.005 | 0.98 | 40000 | 2.9790 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2