--- base_model: Haleshot/Mathmate-7B-DELLA-ORPO tags: - finetuned - orpo - everyday-conversations - adapter datasets: - HuggingFaceTB/everyday-conversations-llama3.1-2k license: apache-2.0 language: - en library_name: transformers pipeline_tag: text-generation --- # Mathmate-7B-DELLA-ORPO-C Mathmate-7B-DELLA-ORPO-C is a LoRA adapter for [Haleshot/Mathmate-7B-DELLA-ORPO](https://huggingface.co/Haleshot/Mathmate-7B-DELLA-ORPO), finetuned to improve performance on everyday conversations. ## Model Details - **Base Model:** [Haleshot/Mathmate-7B-DELLA](https://huggingface.co/Haleshot/Mathmate-7B-DELLA-ORPO) - **Training Dataset:** [HuggingFaceTB/everyday-conversations-llama3.1-2k](https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k) ## Dataset The model was finetuned on the [HuggingFaceTB/everyday-conversations-llama3.1-2k](https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k) dataset, which focuses on everyday conversations and small talk. ## Usage To use this LoRA adapter, you need to load both the base model and the adapter. Here's an example: ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel, PeftConfig import torch base_model_name = "Haleshot/Mathmate-7B-DELLA" adapter_name = "Haleshot/Mathmate-7B-DELLA-ORPO-C" base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(base_model_name) model = PeftModel.from_pretrained(base_model, adapter_name) def generate_response(prompt, max_length=512): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=max_length, num_return_sequences=1, do_sample=True, temperature=0.7) return tokenizer.decode(outputs[0], skip_special_tokens=True) prompt = "Let's have a casual conversation about the weather today." response = generate_response(prompt) print(response) ``` ## Acknowledgements Thanks to the HuggingFaceTB team for providing the everyday conversations dataset used in this finetuning process.