--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: openai/whisper-large datasets: - common_voice_11_0 metrics: - wer model-index: - name: whisper-LARGE-AR results: [] --- # whisper-LARGE-AR This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6586 - Wer Ortho: 52.7723 - Wer: 56.2992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.349 | 0.8 | 50 | 0.6586 | 52.7723 | 56.2992 | ### Framework versions - PEFT 0.11.2.dev0 - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1